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These are based on Max’s lecture notes, with added commentary and typed instead of written.
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Numbers

There are many different types of numbers. For example, from Java, you know ints and floats store different types of
numbers. This is also the case in math.

Whole numbers are all integers greater than or equal to 0, and this collection is denoted by W.? The natural numbers
(N) are the same thing.?

But what about negative numbers? Then, it’s simply the integers, denoted Z.

But we don’t always deal in nice, clean numbers. Division does not always work out, so we need to add more. Combining
two integers into a fraction becomes the rationals, denoted Q.

Unfortunately, this still does not cover all numbers. /2 and 7 are not rational but certainly numbers. Both numbers are
part of the reals, denoted R, which is an entire continuum of numbers.

But yet, this still does not cover all numbers. What are the solutions to the quadratic 2 + 2z + 2 = 0? They do not exist
in the reals, but they do exist in complex numbers, as —1 — i and —1 + i, where i = v/—1. We call this set the complex
numbers, denoted C.*

There is also a subset (a smaller piece) of complex numbers where the numbers are purely imaginary. These are called
imaginary numbers and are often denoted I, but this is not always true (it may also refer to strictly irrational numbers).

Oy

Figure 1: A handy diagram of the different types of numbers.

'This is debated. According to Wikipedia, it’s American elementary school teachers’ fault.

2Not always

3Shockingly, this is also debated, although, in the real world, nobody talks about whole numbers and mostly talks about naturals. Also,
when defining number systems, they always start with zero, so therefore it is “natural” to include zero.

*Itis algebraically closed, which is a unique property. This means that for any nonconstant polynomial, there will be a solution in the set,
which has a lot of other interesting effects. However, it does lose an ordering compared to the reals.



Bases
How do we read numbers now? Via a positional base system, specifically base 10.

For example, when reading the number “563,” it means 5 - 100 + 6 - 10 4+ 3 - 1. This can be generalized: for example,
683421 = 6-10° + 8- 10* +3-103 +4-102 +2- 10! + 2 - 10°.

Even more generally, for each digit in a number, you raise the base to the power of the position (zero-indexed from the
right), then multiply by the value of the digit.

This can work in other bases, like base 2 (binary):
1101, =1-23+1-224+0-2 +1-2°=13,,
Also, subscripts are often used on numbers to indicate their base, which would be confusing otherwise.

Here is another example, now with base 16. It uses a different set of characters:

Value | Digit Value | Digit
0 0 8 8
1 1 9 9
2 2 10 A
3 3 11 B
4 4 12 c
5 5 13 D
6 6 14 E
7 7 15 F

But applying it is very similar:

4D1 =4-16%2+13-16+1 = 1233

Propositional Logic
Propositional logic is a type of algebra that works with boolean values (true/false), compared to typical algebra, where
you work with, e.g., real numbers.

Operators
Like normal algebra has operations like addition and multiplication, propositional logic also has operations.

Not: —/~
It is a unary operator, which means that it does an operation on only one thing. When negating a variable, you get the
opposite. Let’s write out the possibilities:

— True = False
— False = True

The = means “equivalent to.”

To represent this situation formally, we can create a truth table:

Input | Output
A —A

True | False




False [ True

In a truth table, you give all inputs on the left side and all resulting outputs on the right side. As expected for a negation/
not, you can see that you get the opposite value after negation.

And: A

This is also known as a conjunction and is a binary operator, which means it works on two inputs. It returns true when
both inputs are true. Once again, let’s write out the possibilities:

True A True = True
True A False = False
False A True = False
False A False = False

We can also make this into a truth table:

Inputs Output
A B | ANB

True | True True

True | False | False

False | True | False

False | False | False

We can also derive the negation of that:

Inputs Output
A B |—-(AAB)
True | True False

True | False True

False | True True

False | False True

or:v
This is also known as a disjunction and is a binary operator. If either input is true, it returns true.

Inputs Output
A B | AVB

True | True True

True | False | True

False [ True | True

False | False | False

Exclusive or (xor): ®
True output is when only one of its inputs is on, not both.



Inputs Output
A B A® B
True | True | False

True | False | True

False [ True | True

False | False | False

How can this be formed via negations, conjunctions and disjunctions?
Either A is on and Bis off, or Ais off and Bison.®
Translating this into propositional logic:

(AAN—-B)V (=AA B)
Implies: —

A — B meansthatif Aistrue, then Bis true. This means that if A is false, B can be whatever, and if A is true, B must
be true, leading to the following truth table:

Inputs Output
A B |A—B

True | True True

True | False | False

False | True True

False | False | True

For example, if z is some object, x is a banana — x is a fruit is an entirely truthful statement for all objects since all
bananas are fruits. This does not mean that all objects are fruits or that all fruits are bananas, just that if somethingis a
banana, itis a fruit as well.

Furthermore, you know that if something is not a fruit, it is not a banana. This can be written like =B — —A and, gener-
allyA - B=-B — —A.

Anyways, how can this be formed via negations, conjunctions and disjunctions?

This one has only one false, so it’s probably easiest to target that and then invert it.

DeMorgan's Law

~(AA-B) =T _AvB

Properties

Identity: A A True = Aand AV False = A

IdempotentLaws: ANA=AandAVA=A

Tautology: A V —A = True

Contradiction: A A =A = False

Universal Bound: A V True = True and A A False = False
Communtative: AV B=BV A

Double Negative: =(—=A) = A

AbsorptionLaws: AV (AAB)=AandAN(AVB)=A
DeMorgan’s Laws: =(AV B) = -AV -Band —~(AA B) =-AV—-B
Distributive Laws: AA (BVC) = (AAB)V(AANC)and AV (BAC)=(AVB)A(AVC)

W Nk WwWwN R

=
e

*The lecture notes went a different route and ended up with (A v B) A =(A A B), which is equivalent.



It is highly suggested that you create truth tables, particularly for DeMorgan’s Laws, to prove that these are correct.

Showing Equivalences

Example
Show the following:

(AVB) - C=(CVv—-A)A(CV—-B)
Doing it:
(AVB) = C
—(AV B) Vv C Equivalence for Implies
(FAAN-B)VvC DeMorgan's
CV (-AN-B) Commutativity
(CVv—-A)A(CV-B) Distributive Property
|

Example: Contrapositive
Show that the contrapositive is equivalent to the normal form. In other words:

A—B=-B——-A
We can do so as such:

A— B
—-AV B Equivalence for Implies
BV —-A Commutativity

——BYV —=A Double Negation

—-B — —-A Equivalence for Implies

Arguments
Given a list of axioms, statements you assume to be true, prove a conclusion. You do this through rules of inference, rules
for manipulating logical statements while preserving the truth value.

For example:

A —- B « axiom
A + axiom

~ B <« conclusion
This is true because if A is true, then because A — B, B is true. This is called modus ponens.

See the laws sheet posted on Canvas for all the rules of inference.

Example

Prove:
AAB
-C—D
-Av-—-D
. C

1. ANB

2. -C—=D

3. " AvV-D



4. A Specializationon 1

5. =D Eliminationon 3,4

6. =——A Modus Tollenson 2,5
7. A Double Negationon 6

Example

Prove:
A—>B
-CvD
B—--D
~mAV-C

1. A—» B

2. -CVD

3. B—-D

4. A — —D Transitivityon1,3

5. =DV —=C Commutativity and Double Negation on 2

6. =D — —~C Equivalence for Implieson 5

7. A— —C Transitivityon 6,4

8. —AV —=C Equivalence for Implieson 7

Sound Inference Rules
All the equivalences on the laws sheet are sound inference rules. What does this mean? A rule is sound if the new state-
ment is true whenever the original statement is true.

For example, this is an unsound inference rule:

A—-B
~B—= A

We can check this via a truth table:

A|B|A—-B|B— A
TITI|T T
TI|F |F T
FIT|T F
FIF|T T

This inference rule is unsound because of the region highlighted in blue, where the first is true and the second is false.

Another example, this time of a sound rule:

AAB
Z A
A|B|lAAB|A
T(T|T T
T|F[F T
FIT|F F
FIF|F F

As you can see, there are no rows where A A Bis true but A is not, so this rule is valid.



Example
Is this rule valid:

(AVB) A (—BVC)

~AvC

A|B|C|(AvB)A(-BVC)|AvC
T(T|T|T T
T({T|F|F T
TIF|T|T T
TIF|F|T T
FlT T[T T
FIT|F|F F
FIF|T|F T
FlF|F[F F
Yes, itis!

Circuits

Circuits are a direct application of propositional logic. Circuits like those you will design in class can be used for real
things, like door switches or seven-segment displays. But first, you need to know the basic symbols used when drawing
a circuit diagram.

Basic Symbols

Battery

The longer side is the positive terminal, and the shorter is the negative. This can power other components, like light-
bulbs.

Lightbulb

®

When the lightbulb is powered, it lights.

Switch



o

\

This is a switch. When it is closed, electricity flows through it. When it is open, like it is above, no electricity flows.

Basic Circuits
Now that we know a few basics, we can actually create a circuit.

- ®

Behold a circuit: when the switch is on, the light is on. When the switch is off, the light is off.

From these basics, we can construct gates.

An and gate can be constructed by putting two switches in series (right after each othery):

= ©)

Only if both switches are on will the lightbulb turn on.

An or gate can be constructed with two switches in parallel (beside each other):

1+
= @

If either switch is on, the lightbulb is on (including if both switches are on).

But writing out circuits like this gets annoying, particularly because you can’t throw multiple switches at once if you have
the same input more than once, so it is simplified for digital logic.

Digital Logic Gates

AND
Here is an and gate:



AANB

-

Like the operator, it takes in two outputs, and outputs on iff both inputs are on.

OR
Here is an or gate:

AV B

s

Like the operator, it takes in two outputs, and outputs on if either input is on.

XOR
Here is a xor gate:

A®B

) —

-

Like the operator, it takes in two outputs, and outputs on if either input is on, but not if both are on.

NOT

/\

Like the operator, it takes in one input and negates it.

NAND
Not and:

~(A A B)



NOR
Not or:

-(AV B)

Note that a circle signifies negation of the output.

Digital Logic Circuit
Weknow A @® B = (AV B) A —(A A B). Let’s create this as a circuit.

Now, we have an exclusive or circuit. Isn’t that exciting? Try making a truth table via the circuit (label inputs). It should
be the same as the truth table for XOR.

Anotherone: =(A A B) ® (C V B)

®

©
Functional completeness

Either NAND or NOR gates can be used to create any other gate.
For example, using | as a symbol for NOR:

ANB=—-(-AVv-B)=(-A)|l(-B)=(Al A) ] (Bl B)

In a circuit, this can be written like this:



®

First Order Logic

Set notation

« {1,2,3}is asetof 3elements

« Sets are collections of nonrepeated elements

» {} or @ isthe empty set.

« x € {1,2,3} means that z is an element of the set {1, 2,3} whichmeansz =1V z =2V z = 3 here.

Statements
A statement or proposition is a sentence that can be evaluated to a boolean.

For example:

e 242=4Vv

e 14+0=2V

I have > $20 in my wallet v/

e xz>20X

« Red is the best color X

» Letx = moneyinwallet,z > 20

Quantifiers
When describing events, we often need to state something as true for all things or perhaps just some things.

We can do this with V (for all) and 3 (exists). For instance, let’s write the statement that all real numbers squared are
nonnegative:

YV € R,a:2 >0
Note that in this class you must always include the set.

These quantifiers can convert non-statements into statements: z2 > 0 is not a statement, but Vo € R, 22 > 0'is.

What about complex numbers:
VzeC,z2>0
But this statement is false, although it is a statement.
What about saying there is an object that weighs more than a ton?
Jx € objects, x weighs > 1 ton
What about saying there is some real number squared that is nonpositive?
dx € R,x2 <0
We can also define functions. For example:

P(z):x>20



Then P(2) is a statement (evaluates to false). This is often useful when making a complicated statement, for example, if
anumber is prime.

Unwrapping
If you have a statement like Vz € {1, 2,3}, P(z), then you know P(1) A P(2) A P(3). Similarly, for there exists, 3z €
{1,2,3}, P(z) = P(1) vV P(2) V P(3).

This can be expanded to infinite sets as well:
Ve e N,P(z) = P(0) A P(1) A P(2) A
dr e N,P(z) = P(0)vP(1)V P2V
This leads us to some rules:

Specialization
Forexample, Vz € {1,2,3}, P(x) — P(1). More formally, Vz € S, P(z) — Jy € S, P(y).

Generalization
For example, P(1) — 3z € {1, 2,3}, P(z).

More formally, this is like 3y € S, P(y) — 3x € S, P(z), but that’s not very helpful.
Negation
DeMorgan’s rule shows that =(P A Q) = =P V —Q. We can apply this infinitely to a qualifier like so:
-(Vz € {1,2,3}, P(z)) = —=(P(1) A P(2) AP(3)) =—P(1) V—-P(2) v—=P(3) =3z € {1,2,3},-P(x)
Generally, ~(Vz € S, P(z)) = 3z € S,-P(x).

This also works in reverse: ~(3z € S, P(z)) = Vx € S,—P(z).

Multiple Quantifiers
If you have multiple of the same quantifier next to each other, you can exchange them.

This means that Vo € A,Vy € B, P(z,y) =Vy € B,Vx € A, P(z,y),and 3x € A,3y € B, P(z,y) =3y € B,3x €
A, P(z,y)

However, this is not the case for dissimilar quantifiers. For example, compare the following two statements:
Ve e P,3y € P,L(y,x)
Jy € P,Vx € P,L(y, )

Let P be the set of people and have L(y, z) be the function that tells you if y likes z.

In the first example, every person has someone who likes them (note that it may be themselves!). In the second exam-
ple, there is one person who likes everyone. These are different situations, and as such, different quantifiers cannot be
interchanged.

Sets

What is a set?
A set is an unordered collection of unique elements.

This means that [1,0, 4, 5]° is not a set, as it is ordered, and {1, 1, 2} is not a set because it has duplicates.

{1,2,3} is a set because it is unordered and has unique elements.

6Square brackets indicate that it is ordered



Because itis unordered, {1,2,3} = {3,2,1}

Terms
Empty Set
The set with nothing in it:
{}=o
Subset
If all elements in one set are inside another:
ACB

Proper/Strict Subset
If all elements in one set are inside another, and the sets are not equal:

ACBANA#+B=ACB
Set Intersection
The intersection of two sets is all the elements the sets have in common:
ANB
If the sets have nothing in common, the result is the empty set.
Forexample, {1,2,3} N {2,3,4} = {2,3}.
This is the definition:
{r|lr€e ANzeB}=ANB
Set Union
The union of two sets is all the elements in both sets:
AUB
Forexample, {1,2,3} U {2,3,4} = {1,2,3,4}.
This is the definition:
{rlre AVzeB}=AUB

Set Difference
All the elements in one set that are not in the other:

Forexample, {1,2,3,4} — {2,5,6,7} = {1,3,4}

Set Partitions

A grouping of the elements in a set so every element in the set is in one subset.

For example, partitions of {1,2,3,4,5,6} include {{1,2,3},{4,5,6}}, {{1,5,6},{2,3,4}} and
{{1}, {2}, {3}, {4}, {5}, {6}}.

Set Cardinality
Cardinality indicates the size of the set. It’s the number of things in the set.

A=1{1,2,3} = |A| =3



Set Compliments
The complement of a set is everything that is not in that set:

AC = &

You must set a universe (set of everything). It is usually denoted by U. Under most axioms, it is impossible to construct
a true universal set, so you must always set a U, although it may be implicit.

A=1{1,2,3} AU =1{1,2,3,4,5,6,7,8,9} — A® = {4,5,6,7,8,9}

Disjoint Sets
Two sets are disjoint if they have no elements in common.

In other words, AN B = &.

Set Membership
x € Ameansthatzisin Aand z ¢ A meansthatz is notin A.

Power Set
The power set of A is the set of every subset of A:

P(A)
For example:
P(A) = {{}, {1}, {2}, {3}, {1, 2}, {1,3},{2,3},{1,2,3}}
Symbolically, this means:

rePA)<==zxzCS

Cartesian Products
The cartesian product of two sets is a set of tuples such that each tuple corresponds to one pair from each set:

AXx B
For example:
A ={a,b,c}
B={1,2,3}

A x B={(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(c,1),(c,2),(c,3)}
Symbolically, this means:

Ax B={(a,b)|]a€e ANb€E B}
Note that A x B # B x A.

Set Builder Notation

To the left of the |, you have an expression with variables to fill in; on the right, you have an expression constraining the
variables.

For example, all integers greater than 2:
{z|z€Z,x>2}
Exercise

+ All even integers
» {2z |z € Z}or{x|x € Z A2|x}



« Every third positive integer, starting at 2.
» {3z +2|z€ZANx >0}

« The set of all numbers divisible by three and five
» {z|3|z Ab|z}

Cardinality
Often, we want to know if two sets are the same size. For finite sets, this is pretty easy: count them. But what do you do
for infinite sets?

One way to do this is to construct a bijection between two sets.

Bijections

Abijection is a function that maps each element from set A onto set B and vice-versa.
Exercise

The set of integers is infinite, and so is the set of all even integers. Which one is bigger?
Create a function that maps each integer to a corresponding even integer:

0<0
12
—1 < -2
244
-2 —4
36
—3 < —6

Multiplying each integer by two seems to work! We now have one integer for every even integer and one even integer
for every integer.

Countably Infinite
The natural numbers and any sets of the same cardinality are called countably infinite.

Are the rationals? Yes!

Rational Countability
We know that the rational numbers can be represented by 7 wherea € Z,b € N.

This means that |Q| < |Z x N].
Furthermore, we know that all integers can be represented by the rationals, so therefore |Z| < |Q| < |Z x N|.

Simply zigzag around to reach all of the pairsinZ x N:

Are the real numbers countably infinite? No, by Cantor’s diagonalization argument.

Set Identities
Just like with propositional logic, sets have their own set of equivalences:



Property Rule
Commutative AUB=BUAandANB=BNA
Associative AU(BUC)=(AuB)uCandAN(BNC)=(ANnB)NC
Distribitive AN(BUC)=(ANB)U(ANC)andAU(BNC)=(AUB)N(AUCQC)
Identity AUg=AandANU=A
Complement AUA® =U and Asec A =
Double Complement (AC) =A
Idempotent AUA=AandANA=A
Universal Bound AUU=UandANg =0
DeMorgan’s (AN B)Y = A°UBCand (AU B)Y = A° N BC”
Absorption AU(ANB)=AandAN(AUB)=A
Complementof gandU | U = gandg® =U
Set Difference A—B=ANB¢
Practice
Provethat A— (BUC)=(A—B)N(A—C).
A—(BUCQC)
— AN (BUO)® Set Difference
=AN (BC N CC) DeMorgan's
=(AnA)n(B°nceY) Idempotent
= (A N BC) N (A N CC) Commutative and Associative
=(A-B)n(ANnCY) Set Difference
=(A—-B)N(A-0C) Set Difference

Prove that ((A“ U BY) — A)C = A.

(AU BY) —4)°
c
( (AN B ) DeMorgan's
( (AN B) “n AC) Set Difference
=(ANnB)UA DeMorgan's
=AU(ANB) Commutative
=A Absorption

Set Equality
What does it mean for sets to be equal anyway? By definition, A= B<«<= A C BA B C A.

This can be shown by further going down to the definition of subset and showing that if a variable isin A, itis in B, and
if a variable is in B, show thatitisin A.

Example
Showthat AU (AN B) = A.

"Remember that you cannot remove parenthesis in most cases when simplifying.



Toprove (AU (ANB)) C A, letz € (AU (AN B)).
Therefore,z € AV z € (AN B).

Therefore,x € AV (x € ANz € B)

Therefore, by absorption, z € A.

Toprove AC (AU (AN DB)),letz € A.

Since the proposed superset is unioned with A, anything in A is a part of the superset.

QEDm
Relations
Generally, relations are going to be operations that relate two different things. You already know a few, for example:
>y
y=x—2
%y =0

Defintion
A n-ary relation is a subset of a cartesian product of n sets.

A binary relation is a subset of the cartesian product of two sets.

Usually, we will talk about the latter in this class.

Examples of relations with charts
Lets haveoursetsbe S; = S, =ZN[1,4] = {1,2,3,4}.
Take the relationz > y

We can write out the full cartesian product of these two sets and then label it whenever it is true.

Xy | 1 2 3 4
1,1(1,21,3|1,4
2,1(2,2(2,3]2,4
3,1(3,213,3]3,4

4,114,24,3|4,4

AlwWIN]E=|

Therelationz | y:

X,y| 1 2 3 4
1,1(1,2]1,3|1,4
2,112,2(2,3|2,4
3,1(3,2(3,3]3,4
4,114,214,3]14,4

MW N

Therelation2 | z +y

Xyl 1 2 3 4
1 (1,1(1,2(1,3]|1,4
2 12,1]12,2(2,3(2,4

3,1(3,213,3|3,4




4 [4,1]4,2]4,3|4,4

Inverse relation
An inverse relation R~! can be given by interchanging all of the ordered pairs in the original relationship. If our first
cartestian product was A x B, theinverseis B x A.

If our relationship was z > y, some of the points would be (10, 2), (11, 3) and (9, 8). When we take the inverse these
become (2,10), (3,11) and (8,9).

Now what would the inverse of x > y be?®
Now what would the inverse of z|y be?°.
Note

The examples shown have so far been only for Z onto Z, but these can be on any sets, like noninfinite sets or even two
different sets.

Properties
Let there be a relation R on a set A.

Reflexive
Risreflexive iff Vx € A, zRx

Symmetric
Rissymmetriciff Vx,y € A,zRy — yRz

Transitive
Ristransitiveiff Vz,y, 2 € A,xRy AN yRz — zRz.

Antisymmetric
Ris antisymmetriciff Vz,y € A, xRy N\yRx — x = y.

In other words, the only way (a, b) and (b, a) are in the resulting subset is if a = b.
Example of proving properties

Reflexive, xRy <> x —y = 0.

To prove arelation is reflexive, we must prove Vzx € R, zRx.

We will do so by universal generalization.

Let z be arbitrarily chosen from R. We are to prove xRx.

By definition of equality, z = .
r =
r—zxz=0
zRx

Therefore, since x was arbitrarily chosen, this is true for any real number, and consequently, the relation R is reflexive.

Reflexive, aRb <> 7 | 2a + 5b
To prove a relation is reflexive, we must prove Vz € Z, zRx.

We will do so by universal generalization.

Sr <y
*y|z



Let z be arbitrarily chosen from Z. We are to prove z Rzx.

By definition of equality, z = .

Since z € Z, by definition of divisibility, 7 | 7z
7|7z
7|2z + 5z
Rz

Therefore, since x was arbitrarily chosen, this is true for any integer, so the relation R is reflexive.
Symmetric, tRy <> zy = 1
To prove a relation is symmetric, we must prove Vz,y € R,z Ry — yRx.

Letz,y € RsuchthatxRy. Therefore, by given xy = 1. Since multiplicationis commutative, yx = 1. Therefore, by given,
yRx. Therefore, since x Ry — yRx, the relation R is transitive.

Transitive, tRy <> x >y
To prove a relation is transitive, we must prove that Vz,y, z € R,z Ry A yRz — zRz.

Letz,y, z € Rsuchthat z Ry and yRz. Therefore z > yand y > z, by given.
>y
Yy>z

Since addition is monotonically increasing, we can add the two statements.

r+y>y+=z
>z
zRz

Therefore, since Ry A yRz — z Rz, R is transitive.

Exercises

If R is reflexive, is R~! reflexive?

If R is symmetric, is R~! symmetric?

If R is transitive, is R~! transitive?

Let C be the circle relation, zCy + z? + y? = 1. Prove or disprove that C'is reflexive, symmetric and/or transitive.
Let D be defined by x Dy <+ zy > 0. Prove or disprove that D is reflexive, symmetric and/or transitive.
Transitive Closure of a Relation

Let A be asetand R arelation on A. The transitive closure of R is the relation R on A that satisfies the following three
properties:

1. R* istransitive
2. RCR*
3. If Sis any other transitive relation that contains R, then R* C S

Basically, take a relationship and then add the minimum number of pairs you need to make it transitive.

Partial Order Relation
R is a partial order relation iff R is antisymmetric, reflexive, and transitive.



Total Order Relation
Arelation R over the set A is a total order relation if Va,b € A, aRb V bRa, and R is a partial order relation.™

Intuitively, this means that the relations will form a chain, and the relation will create an order over the entire set.

Topological Sorting
We can construct a topological sort of partial ordering by starting at the top of each chain and moving down a level.

More Exercises

Let R be defined over the set of all real numbers and zRy <> z < y. Is R antisymmetric? Prove or provide a counterex-
ample."

Let P be the set of all people who have ever lived and define a relation R on P such that Vr,s € P,rRs <
r is an ancestor of s V r = s.Is R a partial order relation?

Given the relation mRn < m + n is even, is R antisymmetric?

Equivalence Relations

Let A be asetand R arelation on A. R is an equivalence relation iff R is reflexive, symmetric, and transitive.

The classic example of one of them is xRy <> x =1y, but they can be more general like zRy <

the first four letters of x and y are the same.

Equivalence Classes

Given a set A and a relation R, for each element a € A, the equivalence class of a, denoted [a], is the set defined by
[a] ={z | z € A,z Ra}.

Relation Induced by a partition

You can partition a set A into pieces A, where each piece is a subset of A, nonempty, and mutually disjoint.

Given those partitions, define a relation R such thatVz,y € A;zRy +» JA,,z € A, Ny € A,.

Furthermore, any relation induced by a partition is reflexive, symmetric and transitive, and therefore, an equivalence

relation and the relation’s equivalence classes are the same as the pieces the set was partitioned into.

Rational Numbers, Q
Let A =7 x (Z — {0}). Define a relation R on A such that (a,b)R(c,d) <+ ad = be. Then, Q is the set of equivalence
classes for A using the relation R.

Congruence

Letm,n € Zandd € Z*. mis congruent to n modulo d iffd | (m — n).

This is often written as m = n (mod d).

Another way of thinking of this is that integers m and n are congruent modulo d if their difference is a multiple of d.
Properties of the Modulus Congruence class

Leta,b,n € Z and n > 1. The following statements are equivalent:

1.n|(a—0)

2. a=b (modn)

3. dke€Z,a=b+kn

4. a and b have the same remainder when divided by n.

0IfaRb V bRa is true, then it is automatically reflexive.
" Asilly proof would be that since z > y forms a total order over the reals, it forms a partial order, and is therefore antisymmetric. Don’t
do this, itis a circular proof.



5. a%n=b%n

Sequences
Informally, a sequence is an infinite list of numbers:

1,2,3,4,5, ...
1,3,5,7,9,...
1,0.1,0.01,0.001,0.0001, ...

Formally, a sequence is a function f : D — R, where D s [ny,00) N Z = {ny,ng + 1,ny + 2, ...} where n, € Z=°. The
domain D is called the set of indices, and n, is the starting index.

Example
If D ={3,4,5,6,...} and f(n) = n?, this results in the sequence:

f(3)a f(4)7 f(s)a .. =9,16,25, ...
Example
Usually, we give the starting index and the function:

a, =n? forn >3
= £(3), f(4), f(5),... = 9,16, 25, ...

Recursive Sequences
We can also define sequences recursively by specifying a formula and a starting element:
a; =4
ap =2a;,_ 41+ 1fork>1
We can then calculate:
ay =2a;+1=2(4)+1=9
a3 =2a, +1=2(9)+1=19

Shifting the starting index
Suppose we have a,, = k? for k > 4, but we want n, = 0 instead of n, = 4.

Then, change kto k + 4: a;, = (k + 4)°.

Generally, to change the starting index from a to b, replace all k with k + (a — b).

Summations
« How to add multiple elements
+ Used heavily

Common Sums



2:1:1+1+1+m+1=n
k=1

n 1
k:1+2+3+~--+n:n(nT+) Gauss's Sum

k=1

nn+1)2n+1)

6

n 1— rn+1

E=1l 42t = Geometric Sum
pord 1—r

Sum of Squares

Zk2:12+22+32+"'+n2:
k=1

Note the zero on the geometric sum!

These are useful because you can break down more complicated sums into these sums for simplification.

Examples

1—16°
=6

1—16
= 6710886

You can put a sum inside of another sum:

A more complicated example:



= 23391

Sum Properties

8

a=2xa
n=1
x T T
d(a+b)=>a+d b
n=1 n=1 n=1
T T

Products
Products are very similar to sums, except they work with products:

10
IIi:1x2x3x4x5x6x7xsx9x10:1m:3&mm0
=1

Induction

Suppose | told you two things:

« It will be sunny on January 1st, 2022. (base case)

« Any day after January 1st, 2024, if it is sunny that day, it will be sunny the next day. (recursive rule)

You could then conclude that it will be sunny every day past January 1st, 2022.

We can apply this idea to sequences as well. If we’re looking at a sequence and we have some formula for it, f(x), and
we know:

£(0)
f(n) + next item = f(n + 1)

We have proved that f(x) predicts the sequence.

Examples



Example: 3" % = nlntlGn+l)

Show, for every positive integer n, that:

nn+1)(2n+1)

12422+ 4+n? = 6

Let’s start by rewriting this into a form that is more easily proven:

iz’? _n(n+1)(@n+1)
=1 6

Now, it is clear what our base case is (n = 1), so let’s prove it:

Base case (n = 1):

Substitute for n on both sides of the equation:

i:ZQ; 114+1)(2-141)

=1 6
22123

6

126

6

1=1

Because 1 = 1, we have proven the base case.

Now, it is time for the inductive hypothesis. We plan to do weak induction, so we should state that all we assume is that
the previous (n) statement is true, which we can then use to prove the following (n + 1) statement.

Inductive hypothesis: Assume, for some n > 1, that

i; 2 n(n + 1)6(2n +1)

I used n > 1 for the inductive hypothesis because we plan to go more positive, and our base case is n = 1. Notice that
this statement is undoubtedly true because our base case proves it. In other words, by applying induction, we will ex-
panditfroma3dtoaV.

Now, for the inductive step.

Inductive step: Show using the n case that

o m+ D)+ 1+1)20m+1)+1)
> ¢ 6

Note that this is equal to ((n + 1)(n + 2)(2n + 3))/6, which is equal to (2n3 + 9n2 + 13n + 6) /6, which will likely be
easier to identify.

L, D)+ 1+ D20 +1)+1)

~)

iﬂ 2 (n+ 1><n+62)(2n+3)

n 2n3 +9n2 4+ 13n+6
=1

~J




n(n+1)(2n+1)
6

2L 2n® 4+ 9n® + 13n + 6
6 6

1)(2n+1 2n3 +9n? +13n 46
n(n + )6(n+ )+n2+2n+1; n° + n6+ n 4+

n(n+1)(2n + 1) + 6n2 + 12n + 6 = 23 + 9n2 + 13n + 6

Now we will apply the inductive hypothesis, 3= i* =

n(n+1)(2n + 1)

n(n+1)(2n + 1) 4+ 6n2 + 12n = 2n3 + 9n? + 13n
n(n+1)(2n + 1) + 6n? Zom3 + o2 4n
n(n+1)2n+1) = 203 + 3n2 +n
n(n+1)2n+1) = n(2n? +3n+1)
n(2n?+3n+1) =n(2n?+3n+1)
These are the same statement therefore they are equal. Therefore, since n — n + 1, by induction,

n 1)(2 1

i=1

Example: 3 + 3" (3 + 5i) = w

Prove:

3—1—26(3—1—52’): (n+1)(5n 4+ 6)

i=1

This will once again be weak induction. Since you’ve already seen it above, | will have fewer explanations.
Base case (n = 1):

Pluginn = 1:

Because 11 = 11, the base case is proven.

Below, notice that you can use whatever variable you want to. | decided to use n — 2 in this case because that leads to
the inductive step factoring.

Inductive hypothesis: Assume for somen — 2 > 1 that:

n—2
3+ Z(s +5i) = (n—=2)+ 1)25(n— 2) +6)

Inductive step: Show the n — 1 case:



n—1 L2 (n—=1)4+1)(5(n—1) +6)

3+ > (3+5i) =
i=1 2
-1
? (5n+1)
3 34+ 5t) =
+ E (3+5i 5

3+§f@+m> G+ (345(n—1)) 2Bt

=1 2
— ? TL(5TL+1)
3+ 3+5z +3+5n—5—T
=1
n—2 ? n(5n+ )
3+ (3+5z)+5n—2—T
i=1
Apply the inductive hypothesis:
—2)+1 -2 1
(=2 + V(G -2)+6) 2 nlEn+1)
2 2
-1 -1 1
(n—1)(5n 0+6)+5 n(5n + 1)
2 2
—1)(5n —4 n(5
DG g, <n2+ 1

(n—1)(bn—4) +10n — 4 = n(5n + 1)
5n2 —9n+ 4+ 10n — 4 = n(5n + 1)
?
5n2 —9n + 10n = n(5n + 1)
5n2 +n = n(5n + 1)
n(d5n+ 1) = n(bn + 1)
Since the statements are the same, they are equal. By induction, sincen —2 —-n — 1:

(n+1)(5n + 6)

¥n>1,3+Y (3+5i)=
=1
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