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Purpose
What is a language?

A means of communication.

Why is language important?

They allow you to share your ideas.
How do we design a language?
How do we implement a language?
Explored further later in class.

Is [->+<] a sentence?

Maybe, its Brainfuck.
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Exams  (in-per-| 12%, 12%
son)

March 5th, April 26th




Projects 3%, 5%, 8%, 8%, 8%, 3%, | January 31st, February 7th

5%
Quizzes 2.5%, 2.5%, 2.5%, 2.5% February 9th, February 23rd, March 29th,
April 26th
Lecture Quizzes | 4%
Final Exam 22% May 17th
Discussions
e Ungraded

e Coding Exercises
e Project Implementation

Course Overview

Programming languages are like spoken languages: a form of communication to make your
ideas work.

Why do so many languages exist? They have different strengths and weaknesses.

Advice

Ask questions if you are confused

Make friends, be nice

Start projects early

Feel emotions, be in touch with yourself
Expect to get things wrong

Look at the notes instead of the slides

OCaml

Typing

Type systems determine what data is and how it's used.
Examples

Java

3; // 1int

1.2; // float

true; // boolean

3+1; // 4

10 && 40 // ERROR: bad operand types for binary operator
X +yY //-> how to determine it works

C

3; // 1int

1.2; // float

true; // ERROR: 'true' does not exist

3+1; // 4

10 && 40 // 1

X +Y //-> how to determine it works (although 1it's less strict than Java)

Dynamic type system
While the program is running, check the types.



e Java (polymorphic types)
¢ Ruby and Python

Static type system

Before the program runs, check the types.
e C

e Java (sometimes)

Manifest (explicit) typing
Explicitly telling the compiler the type of new variables.
Java:

int x = 3; // explicit
var y = "Hello"; // implicit, but set (so Java doesn't have a manifest typing system)

This implies that the types of things are associated with variables

Latent (implicit) typing
Not needing to give a type to a variable.

Python:

X = 4

print(x) # 4

y = "hello"

x = True
print(x) # True

Types are typically associated with values.

Functional Programming
A programming paradigm based on functions.

the classification of programming?rapproach based behavior of code

Certain ways of structuring the solution to a problem. Depending on your language, you will see
problems differently. Ocaml enforces functional programming, so you will do things differently.

Programming Paradigm

Typically associated with language features. Many languages have a ton of overlap:
e Python is imperative, object-oriented, and functional

e Ocaml is imperative, object-oriented, and functional

But different languages emphasize different paradigms.
Features
¢ Immutable State

e Functional Programming C Declarative Programming
e Referential transparency

Program state
The state of the machine at any given time. Typically in the form of the contents of variables.
Mutable state (C):

Xx = x + 1
al[o] = 42



Imperative programming has mutable state, where it can change and destroy data. It can cause
side effects, which are often very hard to reason about.

Example (Java):

int count = 0;

int f(Node node) {
node.data = count;
count += 1;
return count;

3

This is not a mathematical function because f(0) = {0, 1,2, ...}, which is not valid because func-
tion outputs must be unique.
No referential transparency: f(x) + f(z) + f(x) # 3 x f(z)
Reality Check: There is not necessarily one state because of threading and many other things.
int x = 1;
if (fork() == 0)
X = x + 1;
else
X = x * 5;
wait(NULL)
printf("x: %d\n'", x);

Functional Programming uses immutable state:

e Will minimize side effects

o Assumes referential transparency

e Which helps us build correct programs (no unexpected outcomes)

Declarative programming
Imperative programming commands the program to do things (Python):t

def evens(arr):
ret = []
for x in arr:
remainder = x % 2
if remainder == 0:
ret.append(x)
return ret

Declarative instead declares the result:

def evens(arr):
return [x for x in arr if x % 2 == 0]

Functions and Expressions
Our first program!

(* hello.ml *)
print_string "Hello world!\n"

e It has a comment with parenthesis, and it appears to be typically multiline
e print_string uses no parenthesis

e No semicolons (for now)

¢ Runs from top to bottom without a specific start

e print_string does not add a new line on its own

e print_string explicitly takes a string instead of being generic in some way



e OCamlis a compiled language

$ ocamlc hello.ml

$ 1s

a.out hello.cmi hello.cmo hello.ml
$ ./a.out

Hello World!

$

Helpful programs

e ocaml: repl (Read-eval-print loop) like python
utop: better ocaml

dune: like Make, tests, compiles, runs

e opam: package manager for OCaml

You probably want to run dune utop src.

; ; to end expressions

Expressions

e Everything is an expression

» Denoted (e)

Expressions evaluate to values

» Denoted (v)

All values are expressions, but not vice versa
Expressions all have types

» Denoted (1)

e: t means the expression e has type t:

3:int
true:bool
3.1:float

3+1:int
true && false:bool

If

OCaml

if guard then true_branch else false_branch (* guard must be a bool, true branch must
have the same type as false_branch, and the resulting type is that shard type ¥*)

C

if (guard) { // guard is an expression
true_branch
} else {

false_branch

3

Examples

if true then false else true;; (* false:bool *)

if (if true then false else true) then 3 else 4;; (* 4:int *)

1+(if (if true then false else true) then 3 else 4);; (* 5:int *)

2<(1+(if (if true then false else true) then 3 else 4));; (* true:bool %)

if (if true then false else true) then (if 3 > 2 then 5 else 6) else (if false then
1 else 2);; (* 2:int *)



f true then 3 else 1.2 (*Error: This (1.2) expression has type float, but an expression

was expected of type 1int %)
Lets
Making a function

Cc

void addl(int x) {
return x + 1

k4
return_type func_name(typel argl, type2 arg2, ...) {

body
ks

OCaml

let addl x = x + 1 (* this 1is specifically 1int -> int by virtue of adding the int 1

*)
let func_name argl arg2 ... = body

Adding floats:

1. + 2. (* error: expected 1int %)
1. +. 2. (* 3. %)

float to int:
(int_of_float 2.3) + 4 (* 6 *)
Comparison requires both values to be the same type:

true > false: true
3 > 4: false
false > 3: error: 3 is not an expression of type bool

ocaml

let cmp x y = x >y : 'a->"a -> bool

Wow, generics! 'a -> 'a implies that both of them have the same type!

let f xyz =5 'a->"'b->"'c->1nt
You can even have different types, pretty cool.

Recursion
let rec fact x = if x = 0 then 1 else x * fact (x - 1)

fact 4 = if 4 = 0 then 1 else 4 * fact (4 - 1)

fact 4 = 4 * fact (3)

fact 4 = 4 * (if 3 = 0 then 1 else 3 * fact (3 - 1) )

fact 4 = 4 * 3 * fact 2

fact 4 = 4 * 3 % (if 2 = 0 then 1 else 2 * fact (2 - 1) )
fact 4 = 4 * 3 * 2 * fact (1)

fact 4 = 4 *3 %2 % (if 1 = 0 then 1 else 1 * fact (1 - 1) )
fact 4 = 4 * 3 * 2 * 1 * fact (0)

fact 4 = 4 *3 %2 %1 * (if 0 = 0 then 1 else 0 * fact (0 - 1) )
fact 4 = 4 * 3 * 2 * 1 * 1

fact 4 = 4 * 3 % 2 % 1

fact 4 = 4 * 3 % 2



fact 4
fact 4

4 * 6
24

Lists and Pattern Matching

Lists
[1; 2; 3]: int Llist

The only thing that matters for the type of a list is the datatype it contains. They also have to
be homogenous in data type. All the syntax is a series of expressions, semicolon separated, so
you can even do stuff like this:

[1; int_of_float 4.3; if 1 > 3 then 3 else 6]
List Manipulation

Appending
[1; 25 3] @ [4; 5; 6] (* [1; 2; 35 45 5; 6] *)

Cons operator

1 [1 (*x [1] %)

1::2 ::[] (*[1; 2] %

let £ x y X 12y (¥ 'a -> 'a list *)

Pattern Matching
switch (3) {
case 1: return
case 2: return
case 3: return
default: return

3

match val:t with
1->
[2 ->
[3 ->
[ ->

a
Hp"

C
ngn

mott

a
npn

C
ndn

let get_head 1st = match lst with
[] ->-1
|head::tail -> head
let add_first_two lst = match lst with

[T -> -1
[[x] -> -1
|[h1l::h2::tail -> hl + h2

let rec sum_lst 1lst = match 1lst with

[l ->9

[x::xs => x +

(1, 2, 3) : int
(1, false, 3) :
let rot t matc
let new func t =
>1dnt * 'a * bo

(sum_lst xs)

* 9nt * int
int * bool * int
h t with (a,b,c) -> (b, ¢, a) :

ol

10

'a* 'b* 'c > 'b* 'c* 'a
match t with (a, b, ¢) -=> (b + 1, c, a & false): bool * int * 'a -



Datatypes

Regular Expressions
A pattern to describe a set of strings.

How we describe sets in other contexts
Do operations on other sets:

RNZ
List items:
A=1{1,2,3,4,5}
Set builders:
B={z|z e RAz >5}

Complements:

C=B°
Recursively:
0eD
xre€D=zx+1€D
By definition:

R = reals

For regular expressions, we, as a CS community (or rather, we listened to some dead guy), de-
cided on a way to describe sets of strings.

Regular expressions meaning
Regular Expressions are used to describe regular languages (this will be explored further in a
future lecture). For now, it is just a tool used to search for text.

Inventing Regex: Product Requirements

A pattern that describes a set of strings

An alphabet (the symbols in a string)

Concatenation (combining strings)

Boolean or

Precedence

» We now have both boolean or and concatenation, so now we have to decide precedence
Quantification

» How much of a string do we need to use when checking

All can be converted to formal math to prove something.

Intro to Regex
We write patterns, called regular expressions or regex.

Our first regex

a

What a complicated regular expression!

1



What does this describe?
Just the single letter a? Yep!
o/ = {"a")
What about this one:
hello
Perhaps “h”, “he”, “hel”, “hell” and “hello”?

Perhaps just “hello”?

Example of concatenation
Yep!

/hello/ = {""hello"}

Through this, we have learned how concatenation is expressed: through putting patterns next
to each other.

Examples of or
What about this one:

hello|hi

Perhaps “helloi” and “hellhi”? Perhaps “hellohi”? Perhaps “hello]hi”? Perhaps “hello” and “hi"?
Yep!

/hello|hi/ = {"hello", "hi"}

Now we know that | is the or operator and its precedence: it goes to the start or end or to the
next or operator.

/this|that/ = {"this", "that"}

/this|that|the other thing/ = {"this", "that", "the other things"}

Examples of precedence (parens)
JcLiff|clyff/ = {"cliff", "clyff"}

There are a lot of shared characters there; let’s use parenthesis instead to make it shorter:
/(G |y)Ff/ = {"cLiff", "clyff"}

Examples of quantification
/0|1|2|3|4|5|6|7|8|9/ — {lloll’ lllll, II2||7 II3||’ II4|I, ||5II’ ||6||, II7II’ ||8II’ II9II}

What about all two-digit strings?
/(011]2|3]4|5]6]7(8]9)(0|1|2|3|4|5]6]7]8]|9)/ = {"00", "01", "02",...,"99"}
But that’s repetitive! Use the quantification operator instead!
/(01112]|3|4|5|6]7]8]9){2}/ = {"00", "01", "02", ...,"99"}
You can also add bounds:

/(0]1){4,7}/

12



That results in 4 to 7 character long strings composed of ¢s or 1s.

Kleene Operator
The Kleene operator (*) repeats ® or more times:

/(ha)*/ = {"" "ha", "haha", "hahaha", ...}

+ operator

[a+] = [aa*] = /{1, }/

? operator
/-2[0-91+/ = /(|-)[0-9]+/ = /0{0, 1}[0-9]+/

Bracket Expression
/01112|3|4|5|6]7|8|9/ = /[0123456789]/ = /[0-9]/

The hyphen works via the Unicode code point values associated with the characters. For most
common characters, this is via ASCII.

ASCII Table
Here is a helpful table of ASCII values:
30 40 50 60 70 80 90 100 110 120

0: ( 2 < FP Z d n x
1: ) 3 = G Q [ e o y
2: * 4 > H R \ f p z
3: ' + 5 2 1 S 1 g q {
4 M 6 @ 9 T ~h r |
5: # 7 A KU _ i s }
6: $ 8 B L V i ot o~
7: % / 9 C M W a k u DEL
8: & 6 : D N X b 1 v

9:'" 1 3 E O Y ¢ m w

The most important ones are "A" =65 and "a" =97 and " " =32

More examples of Bracket expressions
/abcde'th'i gklmnopqr‘stuvwxgz/ = /[a—z]/

/[a—zA—Z]/ + /[ﬁ—z]/

. operator/Any character
Any character.

~ operator/Start of text
The start of the text.

$ operator/End of string
The end of the string.

Negation

/["aeiou]/ = all characters that are not a, e, i, 0, u

13



Escaping
If you want to actually use a period or any other operator, you must escape it:

/-2[0-9]+\.[0-9]+/ # /-?2[0-9]+.[0-9]+/

Exact vs Partial Match
For an exact match, the entire input string must be in the resulting set of the regex.

(* let match be a function x y %)
match /[0-9]/ "8" -> true

match /[0-9]/ "13" -> false

match /[0-9]/ "A8" -> false

match /[0-9]/ "A" -> false

For partial matches, the input string simply must contain a match.

(* let match be a function x y %)
match /[0-9]/ "8" -> true
match /[0-9]/ "13" -> true
match /[0-9]/ "A8" -> true
match /[0-9]/ "A" -> false

/[0-9]/ = /"[0-91$/
exact partial

/@gmail\.com$/ = string that ends with @gmail.com

Regex in OCaml

n 1"

#require "re";; (* include regex library 1in utop *)
(* How to create a regex: *)
let regex = Re.Posix.re "[0-9]";;

(* compile regex *)
let compiled_regex = Re.compile regex;;

(* convenience function %)
let str2regex s = Re.compile (Re.Posix.re s);;

let rl = str2regex "[0-9]";;
Re.execp rl "0'" = truej;;
Re.execp rl "A" = false;;
Re.execp rl "ABC4'" = true;;

let r2 = str2regex "~[0-9]$";;
Re.execp r2 "ABC4'" = false;;

Re.execp r2 "0" = true;;

let emailre = str2regex '"@gmaill.com$'";;

Re.execp emailre "umd@gmail.com'" = truej;;
Re.execp emailre 'umd@gmail.comn'" = false;;
Re.execp emailre 'cliff@gmail.com'" = truej;;

Parsing with regex
Searching is helpful, but parsing is better.

14



For long-term storage, stuff must be put onto a hard drive. Everything is a text file, so searching
is always helpful.

Grouping is helpful to pull data out.
This is continuing from above:

(* NOTE: never use regex on phone numbers. They are horrible and are extremely context
sensitive *)

let pn = str2regex "7[0-9]1{10}$$";;

let pn = str2regex ""[0-9]1{3}[0-91{7}$";;

let pn = str2regex "~([0-9]{3})[0-9]{7}$";;

(* this has now made a match group, and we can get from that *)

let groups = Re.exec pn '"0123456789";;
Re.Group.get groups 1 = "012";;

let pn = str2regex "~([0-91{3}) ([0-91{7})$";;
let groups = Re.exec pn "0123456789'";;
Re.Group.get groups 1 = "012'";;

Re.Group.get groups 2 = '"3456789'";;

The index of groups is decided by the position of the opening parenthesis. This may be impor-
tant with nested groups.
Continuing:
let kv = str2regex "([a-z]+):([0-9a-zA-Z]+)";;
let getkv s =
let groups = Re.exec kv s 1in
let key = Re.Group.get groups 1 1in

let value = Re.Group.get groups 2 1in
(key, value);;

getkv "password:verysecurel23" = ("password", '"verysecurel23");;

Language-independence of Regex
Regular expressions are “language-independent”; it's not specifically about OCaml or any par-
ticular language; most languages have support for using them.

Creating Regex through alternative means

Instead of using a string to create a regex, you can manually instantiate one by building it up,
piece by piece.

Re.Posix.re "I am ([0-9]+) years old"

Re.seq [Re.str "I am "; Re.group (Re.repl Re.digit); Re.str " years old"]

These are equivalent statements. The latter might be useful if you are trying to programmatically
create a regex because dealing with strings is a pain.

Finite State Machines

Although this may seem like a large leap from regex to finite state machines or FSMs, good
regex engines are implemented via finite state machines to ensure linear time complexity with
the input size.

This can be an actual real world problem.

15


https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019

Basics of Finite State Machines
Here is an example of a basic Finite State Machine (FSM):

(imagine the labels continue)

Each node (circle) in this FSM represents a state, and each arrow tells you what makes you
change state. Here, each state represents a direction, and the arrows represent turns something
would make.

Let ® represent you facing north. As you continue around the FSM, you can tell that 1 represents
facing east, 2 represents facing south, and 3 represents facing south. It also is self-consistent
because as you traverse the graph, if you go 360°, you will return to the same place you started,
and going 90 degrees back also puts you back to where you just were.

Therefore, this is a correct FSM for keeping track of your direction.

FSMs

Each node is a state, and they are finite. This is not the same as Turing machines and can
represent fewer problems. However, they are still useful to solve problems

Back to Regex
Regex can be expressed as an FSM because each of its operations can be, and FSMs can be
composed.

Reviewing Operations
Fundamentally, regex only needs to support
¢ An alphabet
» The set of symbols allowed
e Repetition
e Branching
e Concatenation (combining strings)

Recall that Regex is describing a set of strings. This set of strings is called the “language”. The
FSM will then describe that set.

Alphabet
Set of symbols allowed. Denoteed by X. A string is then a finite sequence of symbols from X

Concatenation
Suppose L; and L, are languages. Then denote L, concatenated with L, as L L,.

LiLy ={zy |z € Ly Ny € Ly}

Let Ll — {”C”},L2 — {||m||}7L3 — {IISII}
thel’l, /CmSC/ - L1L2L3L1

16



Branching (Union)
Suppose L, and L, are languages. Then denote L, or L, as L; U L,.

Example of range
Ll — {Ilall}’Lz — {”b”},...,L26 — {llzll}
Ll U L2 U b U L26 = /[a—Z]/

Big Example of set <> regex
Ly = {"a"}, Ly = {""}, e, Lyp = {"2"}
LyULyU-ULy = /[a-2]/
Loz = {"0"}, Lyg = {"1"}, ..., Ly = {"9"
Ly ULy U+ U Lyg = /[0-9]/ = /\d/
=~ by concatenation:
(Ly U+ U Lgyg)(Ly; U+ U Lgy) = [[a-2z][0-9]/
((Ly ULy U Lg)(Ly ULy U L)) U (Ly ULy U Ly) = /[abc][abc] | [abe]/ = /[abc]{1,2}/
Lyg = {"-"
(L3g(Lyz U U Lgr)) U (Lyy U U Lg) = /-\d[\d/ = /-?\d/

(LyU...UL,)=/./,assuming single character languages

Repetition (Kleene closure)
Suppose L, is a language. Then, the Kleene closure of L, is denoted L}

Li={z|z=@VezecL Vee L, L, V-}

L ={"a")
Lt = /a¥/
L,L; = as/

~ you can form other repetitions from this basic one

What is a regular language
Languages created by regex are regular. Regular expressions and FSMs are equivalent in their
(limited) power.

For example:
e FSMs cannot find balanced parentheses
e FSMs cannot describe palindromes

Creating the Regex
Suppose L is a language created by a regex r. If string s € L, then r accepts s.

Goal: create a machine to see if » accepts s. This machine can be represented by a finite state
machine.

17



G oy State

This FSM has:

2 states: SO, S1

Initial State: S®

» Only allowed one

Accepting State: S1

» Any number of states (including zero).
Transitions: 0,1

» Symbols in the alphabet

Assume this FSM is operating over the binary language. If at SO, if you see a 9, remain at SO,
and if you see a 1, go to S1. If at S1, if you see a §, go to SO, and if you see a 1, remain at S1.

Example string: ©01601. What would this result in? S1, because you go S® — S® — SO — S1 —
SO — Si.

The double circle around S1 represents the fact that the answer is yes; otherwise, you rejected
the string. Example string: 160100. What would this result in? SO, because you go SO — S1 — SO
— S1— SO — SO.

This regex represents any string that ends in 1or /(0[1)*1/.

—
B

This new FSM is represented by /(.*0)?/. Note the fact that this could be the empty string, as
it starts at an accepting state.

18
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S bset et )bb' e/
@/ﬂ+[b+ C-I-] C-l-)/ b+ C~l—/

> /nibrer] bret!

2 [+ b e/

This FSM is represented by /(a+b*|b+)c+/

Make a state machine for strings with an even number of ®s and odd numbers of 1s:

|

()

(e

An FSM is a graph, and tracing through that graph will let you solve a Regex. (FSMs can be used
for other things, but we don't care.)
Another example: /a/

V@ =/ §S

19



Prove

Finite Automata
NFAs are DFAs are two different types of FSMs. FA stands for Finite Automata. The N stands for
nondeterministic, and conversely, the D stands for deterministic.

Deterministism
If you know the starting conditions, then you know exactly what will happen.

For example, if you throw a pen up, it will always result in the pen coming down, but if you look
at an atom, you have no idea where you will observe the electrons to be.

DFAs
Only one path through the FSM.

NFAs
Two or more possible paths through the FSM with the same input.

When at least one possible output is a yes, then the overall machine says yes. Why does the NFA
exist? Well, all DFAs are NFAs, and NFAs are much easier to build from a regular expression, so
we shall use them.

The plan: Regex — NFA — DFA — Regex

Regex — NFA
8 — mni
"abc" =g *x"a" ex"b" g x"c"
ﬂlwﬂﬂz
é’/’mhu "0\"
"o 123
[N
A o ﬂ,v\é nor l—’ 2 _53
a DFA e

lq....—ﬁl—-a 2_7-‘

¢
AN nSun "la_ imPl;cf- (0nd usless)

Regex only requires:
An alphabet
Repetition
Branching
Concatenation

Therefore, if we can convert these operations into NFAs, then we can make any regex into a NFA.

Base case 1: @ = {}
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(3= g,

Base case 2: {""} = {¢}
i3 B
¢

Base case 3: Alphabet

V—@
'Fof e¥n w‘pll"

v

Inductive Hypothesis: We have a machine with one start and one stop state.

Concatenation:
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Branching:

: G—(D -0
S'\D ) _——:7’31052 @e/ \C@

52 D——@

Examyle  /alb/
@
@/@ ®
S~

Repetition: Finite repetition is just concatenation and (maybe) branching, so we don’t care or
need to prove it. We just need to prove infinite repetition (/*/, Kleene Closure).

5|:>5)—¢-e@ =9 (¥ ()—8-C—Q

£

Example
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¢
l
_ /et M
iy lcd/
L /
/bl cd)t/
NFA — DFA

Intro Examples

2 = &
3
yncy +any Cesdaie 2Ty
59% of 2 0f (C0% clanee ¢€ brivy
st 6 € 3. in20c 3,
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i-c; losure

UDing an o D1 af £ hoayuong

?
whet coull Tenc P -

Previously, in CMSC330, we proved that all regexes can be converted into NFAs.

What is a NFA?

A graph that has nodes that have non-unique outgoing edges or there are epsilon transitions
between nodes.

) O——06
U\ 7‘]
Cl’s'\l“" yenvg it Fom

@ non-onique oUtybig tlﬂzs one nede 4o gaother
(a=&)
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What is a DFA?
A graph in which every node has unique outgoing costs. (mentioning epsilon transitions is un-
necessary because of the implicit transition)

Type of FA
FSM type : (£, Q; g9, F, 0)
Y. = alphabet set
Q, = set of states
go = starting state
F, = set of final states

d = transition set = set of (source, cost, destination),

NFA — DFA

Underlying Idea
Group all possible outcomes as a singular outcome

e-closure
Answer to the question “Where do I go using only epsilon transitions?”

b__g_ﬁ@ e-Closure of §1%
- §1,2,33
b ¢ ' '
e closwe (s) =S . s
Move

If I know where to begin and I see an action, where do I end up?

This does not include epsilon closure.

Example

25



DFA:
Y ={a,b}(NFA.Y)
We will find Q,, F, and § with time.
Start with the starting state: where does 0 correspond to?
eclosure({0}) = {0,1,2,3} = ¢, = {0,1,2,3}
Where can we go from there?
Vz € ¥,y =move({0,1,2,3},z), N = eclosure(y) = N € Q,, ({0,1, 2,3}, z, ﬁ )ES
—_——

source cost destination

then simply repeat the process with the newly generated nodes until you finish processing every node.
Let's crack on!
eclosure(move({0,1,2,3},a)) = {1,2, 3,4}
eclosure(move({0,1,2,3},b)) = {3,5}
eclosure(move({1,2,3,4},a)) = {1,2,3}
eclosure(move({1,2,3,4},b)) = {3}
eclosure(move({3,5},a)) = {1,2,3}
eclosure(move({3,5},b)) = {4}
eclosure(move({1,2,3},a)) = {1, 2, 3}
eclosure(move({1,2,3},b)) = {3}
eclosure(move({3},a)) = {1, 2,3}
eclosure(move({3},b)) = {}
eclosure(move({4},a)) = {2}
) ={}
eclosure(move({2},a)) = {}
eclosure(move({2},b)) = {3}
Then just assemble the graph:

eclosure(move({4},b

222112)% 5
2(}2.J 3, 43 224 53

/o N ]y

Psuedocode

visited = set()
DFA.Sigma = NFA.Sigma
DFA.Qs = set()
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DFA.q® = eclosure(NFA.q0)
DFA.delta = set()
DFA.delta
DFA.Qs.add(DFA.q0)
while visited != DFA.Qs:
# add on unvisited state S in DFA.Qs to visited
S = (DFA.Qs - visited).pop()
for x in DFA.Sigma:
y = move(S, x)
z = eclosure(y)
if z not in DFA.Qs:
DFA.Qs.add(z)
DFA.delta.add((s, %, z))
DFA.fs = {r for r in DFA.Qs if s in r and s in NFA.Fs}

Example, by the books

DFA.Y = {a, b}
visited = ]
eclosure({0}) = {0, 1,2} = ¢, = {0, 1,2}, DFA.Q, = {{0,1,2}}

= visited = {{0,1,2}}
eclosure(move({0, 1,2},a)) = {0, 1,2, 3,4}
= DFA.Q, = {{3,4,1,0,2}} UDFA.Q,
eclosure(move({0,1,2},b)) = {}

§0,1,23

N
£3,4,1, 0,23'90»

5 2:30\

%3151 lf OJZ

252/@

U

b
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Context-free Grammars

What can we say about context-free grammar?
They describe the rules of language.

Grammars have machines that are associated with them. But, unlike ReGex, there is no one-to-
one transformation to a machine associated with one.

Grammars:

e can describe “valid” sentences.

e involve syntax (a.k.a. syntactically correct)

¢ verifies the order of words in a sentence is correct

Succinctly, grammars describe the structure of a sentence. They ensure that sentences are
grammatically correct. In doing so, this generates a set of strings.

Parts of a grammar

CFG Example
E—-FE+FE|E—-FE
E—-M
M—Nx«M|N
N —>neZ

Terminals
Things that “end” the grammar, as in there is no more recurison that needs to be done.

In the example above, +, -, * and n are terminals.

Non-terminals
Non-terminals are things that don’t end a definition. Typically, these are capital letters. In the
example above, E, M, and N are the non-terminals.

Prove that 4 « 3 — 2 is a valid sentence
F=F-—-F=>M-E=>N«xM—-FE=4xM—-FE=4xN—FE=4x3—F
=4%x3—-—M=>4%«x3—N=>4%x3—2
-~ this sentence is grammatically correct, by leftmost derivation

n €z

r,yeS=>x+yes
r,yeS=>x—yeSs
T, yeE S=>zx*xy€es

Palindromes cannot work in regex, because regex has a finite amount of memory/memoryless.
But CFGs can represent them:

S —aSa|bSb|cSc|albl|c|e
This represents all palindromes with the alphabet of ¥ = {a, b, c}.

Extrapolating, you can also represent ratios of characters, for example, with balanced paren-
thesis:

S—b](S)
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Or with other ratios of characters:
S — aSbb |
= a”b¥,x =2y
S —aSb|aSc|e
#a's = #b's + #c's

Context-free grammars still have restrictions. For example, they can’t represent repeated char-
acters with more than one dependent variable, such as:

a®b¥c?, x = 2y,z = 3y

Interpreter
Our goal is to go from text — machine code.

In sum, for this we need to
1. Lex

2. Parse

3. Interpret

The person ran

To “run” this sentence, first, we need to check if all things in the sentence are valid words.
For example, het sondf dfuy would not meet this step because those are not words.

Secondly, we need to check the structure of this sentence by checking if the words are in the
right order.

For example, ran person the would be invalid because the order is wrong.

Thirdly, see if the sentence has meaning. The person ran does because it describes an actual
situation.

For example, Colorless green ideas sleep furiously is grammatically correct and contains real
words, but it doesn’t have any meaning.

Trying this with OCaml:

2 + 3

is valid.

2 12plus 3

is invalid by lexing (first step).

+ 23

is invalid by parsing (second step)

2 +. 3

is invalid by interpreting (third step)

Your project will be doing these three parts to run a subset of OCaml.

For example,

29



let x =3 1in let y =5 14n x + y—8
letter x = 3 in x — fail
let = x 3 x in — fail
let x = 4 in x +. 5 — fail

Lexing/Tokenizing will convert a string into a list of tokens.

Lexing in OCaml Example
E—-E+E|E—E|neZ

For example in this language, our terminals in this language are +, —, n. You could write this in
OCaml like:

type token = Plus|Sub|Int of 1int

lexer "2 + 3" = [Int(2); Plus; Int(3)]
lexer "+ - 3 4" = [Plus; Sub; Int(3); Int(4)]
lexer "2 * 4" (* fails, as * is not in the language ¥)

Note that lexer does not care if you don't have a valid grammar.

(* string -> token list *)
(* example that you probably don't want to use, but 1is totally possible to use.
let rec lexer string =
(* character by character %)
let charlist = explode string in
let lex_help char_list = match char_list with
|' '::t -> lex_help char_list
| "+'::t => Plus::(lex_help t)
[x::t ifFx =0 || x=21 ] x=2]] x=3]|x=4]]x=51]]x=61]|x=71]
x = 8 || x =9 -> match lex_help t with

*)
let rec lexer string =
if string = "" then
L]

else if Re.match string /~(+|-)?([0-9])+/ then

let num = re.match_group © in

let nlen = len num 1in

Int(num) :: (lexer (substring nlen end))
else if substring string @ 1 = "+" then

Plus :: (lexer (substring string 1 end))
else if substring string ¢ 1 = "-" then

Sub :: (lexer (substring string 1 end))
else if Re.match string /*\s+/ then

let space = len (re.match_group 0) 1in

(lexer (substring nlen end))
else (* anything else *)

(* raise failure *)

failwith "this is not valid OCaml"

(* or skip over value and ignore it %)

(* "2 * 4" -> [Int(2); Int(4)] | "failure")

You may want to use a map of regexes to tokens to make this less repetitive.
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Ambiguous Grammars
Ambiguous grammar example: I saw a dog with a telescope.

This could mean either “I saw a dog and the dog was using a telescope” or “I was using a
telescope and saw a dog”.

To deal with these ambigous grammars, you can either
1. Change the grammar to be nonambiguous.
We will give you non-ambiguous grammar for the project.
2. Change the parser that we will use
In this class, we will use a LL(1) parser
Other parsers exist, but we don’t need them for this class
LL(1) parsers are recursive descent parsers.

Parsing in OCaml
Now for the parser! We should build a tree to represent the sentence structure.

There are two types of trees
1. Parse trees
2. Abstract Syntax Trees

E—-A+E|A—-E|A
A—BxA|B/A|B
B—sqB|C
D —letvar=EinE|C
C—-neZ| (E)|var

type token =
| Int of 1int
| Plus
| Minus
| Star
| Slash
| LParen
| RParen
| Sq
| Let

| Equal

| In

| Var of string

(* a project for those at home is to update this to include D as specified about for
the lexer and parser. *)
(* string -> token list *)
let rec lexer input =
let len = String.length input in
(* parenthesis are there to capture the value *)
let numre = Re.compile (Re.Perl.re "~(-?[0-9]+)") 1in
let subre = Re.compile (Re.Perl.re "”-") 1n
let addre = Re.compile (Re.Perl.re "\\+'") 1n
let mulre = Re.compile (Re.Perl.re ""\\*") 1in
let divre = Re.compile (Re.Perl.re "~/") 4n
let lpre = Re.compile (Re.Perl.re ""\\(") in
let rpre = Re.compile (Re.Perl.re "”\\)'") 1in
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let wsre = Re.compile (Re.Perl.re "~(\\s+)'") 1in
if Re.execp numre input then
let numgroup = Re.exec numre input in
let num = Re.Group.get numgroup 1 in
let numlen = String.length num in
let numint = int_of_string num in
Int numint :: lexer (String.sub input numlen (len - numlen))
else 1f Re.execp wsre input then
let wsgroup = Re.exec numre input in
let ws = Re.Group.get wsgroup 1 1in
let wslen = String.length ws 1in
lexer (String.sub input wslen (len - wslen))
else 1f Re.execp subre input then
Minus :: lexer (String.sub input 1 (len - 1))
else if Re.execp addre input then Plus :: lexer (String.sub input 1 (len - 1))
else if Re.execp mulre input then Star :: lexer (String.sub input 1 (len - 1))
else if Re.execp divre input then
Slash :: lexer (String.sub input 1 (len - 1))
else if Re.execp lpre input then
LParen :: lexer (String.sub input 1 (len - 1))
else if Re.execp rpre input then
RParen :: lexer (String.sub 1input 1 (len - 1))
else failwith '"not a valid character"

type ast =

| Node of 1int

| Add of ast * ast

| Sub of ast * ast

| Div of ast * ast

| Mult of ast * ast

| Square of ast
| Let of string * ast * ast
| Id of string

(*
E->A+E | A-E
A->B*A|B/A
B->sqB | C
C->n | (E)

*)

(* token list -> ast * token list¥*)
let rec parse_e toks =
(* token list -> (e tree, rest of tokens) ¥)
let atree, arest = parse_a toks in
match arest with
| Plus :: t —>
let etree, erest = parse_e t 1in
(Add (atree, etree), erest)
| Minus :: t ->
let etree, erest = parse_e t 1in
(Sub (atree, etree), erest)
| _ -> (atree, arest)

and parse_a toks =
(* token list -> (a tree, rest of tokens) *)
let btree, brest = parse_b toks 1in
match brest with
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| Star :: t ->
let atree, arest = parse_a t in
(Mult (btree, atree), arest)

| Stash :: t ->
let atree, arest = parse_a t 1in
(Div (btree, atree), arest)

| _ -> (btree, brest)

and parse_b toks =
match toks with
| Sq :: £ >
let btree, brest = parse_b t 1in
(Square btree, brest)
| _ -> parse_c toks

and parse_c toks =
(* token list -> (c tree, rest of tokens) ¥)
match toks with
| Int n :: t -> (Node n, t)
| LParen :: £ => (
let etree, erest = parse_e t 1in
match erest with
| RParen :: t -> (etree, t)
| _ -> failwith "missing closing parenthesis, not grammatically correct")
| _ -> failwith "too few tokens, not grammatically correct"

(* token list -> ast *)
let rec parse toks =
match parse_e toks with
| etree, [] -> etree
| _ -> failwith "extra tokens left over, not grammatically correct"

(* ast -> (string * int) list -> int *)
let rec search var env =

match env with

| [1 -> failwith "unbound variable"

| (x, y) :: _ when x = var -> y

|  :: t -> search var t

let rec eval ast env =
match ast with
| Node x —> x
| Add (L, r) -> eval 1 env + eval r env
| Sub (1, r) -> eval 1 env - eval r env
| Div (U, r) -> eval 1 env / eval r env
| Mult (U, r) -> eval L env * eval r env
| Square x ->
let ex = eval x env 1in
ex * ex
| Let (var, value, body) ->
let evalue = eval value env 1in
eval body ((var, evalue) :: env)
| Id var -> search var env

Review
Lexer: breaks down a string into a list of tokens. If a “word” isn’t valid, it will error.
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Parser: It converts a list of tokens to a tree (in our case, an AST). If the “words” don’t form a
“sentence” (it checks the order/structure), it will error.

Interpreter — Value
Evalulator — Value or AST
Compiler — Source Code

Semantics of a language
What is it: the meaning.

Etymology/morphology — parts of known things create meaning
But ultimately, meaning comes from how something is used.

Dictionaries are typically where people go to know those meanings. Words enter the dictionary
through agreement in a society about what something means.

Operational Semantics

Target Language
The language we are describing.

Meta Langauge (English/Public Knowledge)
The language used to describe the target language

From these specifications, you can then create proofs of the correctness of implementations
and operations, like3+4 — 7

Review

Semantics is the meaning (of a program).

Operational semantics is the derivation of meaning through how the program operates.
This can be helpful for proofs.

Target language: the language you are describing.

Meta language: the language we are using to describe the target language.

Example
A grammar:

E—~E+E|neZ

This shows two types of sentences: a plus sentence and a number sentence. Now, we need to
make rules to evaluate those sentences:

Rule A
“n=n
Rule B
62 = 1]2

Vg 18 Uy + Uy

“e;t ey = g
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Then, you can use this to prove statements:

by rule a
=

by rule a
2 = 2

Jis1+2
~142=3
Another example:

by rule a
6 =
-
€1

by rule a
=

LS
{

by rule a
=

- -
€4 Us

4is 1+ 3
1+3= 4

€3 €4 Vg,V2
10 is 6 + 4
?: ;1 V2
6+1+3 = 10

—_——— N——
€1 €o Vg

Now try it with this new grammar:

E—-E+FE|n€Z)|v e strings

Now rules:
Rule A
~An=n
Rule B
Ajeq = vy
Aseq = vy
vz 18 v + vy
~Aje; +ey =g
Rule C
Alz)=v
Az =0

Now we can prove a statement:
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A= S gy = C
W x25 k5,000,426 (s St/

A xS, w6y “‘6”:’“

v

Let’'s add a new rule and update the grammar:
E—-E+E|n€Z|vestrings|letz € Ein E
Rule D
Aje; = vy

A,z vy;eq = Uy

Alet x =€y in ey = vy

Now, another example:

= 4 w=7 |= s /¥
71'5 + — ,
. 7wl
. =) A 7,4
. y| =
A let o ¥:/ o
! T ¢ —
)( €7.
LOLCODE example
I has a var itz 3
sum of var on 6
Rule A
Ain=n
Rule B

36



Aje; = vy A;eq = vy vy is vy + g

A;SUM OF e; AN e, = v;

Rule C
A(z) = v,
Az = v
Rule D
Aje; = vy Az ivgiey = vy
A;THAS A 2 1TZ e \n ey = v,
Rule E

Ajeq = vy A ey = v, vy is if v; <> v, then 1 else 0

A; DIFFRINT e, AN e, = v,

And then we can implement this in OCaml:

type ast =
| Int of 1int
| SUM of ast * ast
| ID of string
| HAS of string * ast * ast
| DIFFRINT of ast * ast

let lolinterp tree =
let rec leval tree env =
match tree with
| Int n => n
| SUM (el, e2) ->
let vl = leval el env 1in
let v2 = leval e2 env 1in
let v3 = vl + v2 1in
v3
| ID x -> search x env
| HAS (var, el, e2) ->
let vl = leval el env in

let env' = (var, vl) :: env in
let v2 = leval e2 env' 1in
v2

| DIFFRINT (el, e2) ->
let vl = leval el env 1in
let v2 = leval e2 env 1in
if vl <> v2 then 1 else 0
in
leval tree []
Property-Based Testing (PBT)
This is a testing paradigm that works as an extension to unit testing.
Typically, when you make a test, you name it, and then you test a particular input and output:
#[cfg(test)]

mod tests {
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H#[test]
fn a_name() {
assert_eq! (function(input), expected_output);
ks
ks

The problem with this is that the programmer must consider the edge cases, which is not usu-
ally easy.

Joke about testing

A QA tester walks into a bar. Walks into a bar, runs into a bar, crawls into a bar, dances into a
bar, flies into a bar, jumps into a bar. And orders: a beer. 2 beers. O beers. 99999999 beers. a
lizard in a beer glass. —1 beer. “qwertyuiop” beers.

Testing complete.
A real customer walks into the bar and asks where the bathroom is.

The bar goes up in flames.

Introducing PBT
PBT tries to get around the fact that a programmer needs to write tests and, therefore, may not
consider edge cases.

It does so by asking the developer to instead assert properties rather than input-output pairs.
For example, for a reverse function on lists, x = reverse (reverse x), for all lists x.

If you can get a program to generate random inputs, you can link the generator to this property
and, therefore, have many more cases than you would write by hand.

let random_int_lists = generate_int_list 1000 in
fold (fun a x -> reverse (reverse x) = x && a) true random_int_lists

1. It is good to test multiple properties.
2. It cannot catch all bugs; it depends on the properties you choose.

(gcheck is the OCaml library for this)

Typing

Type System

A type system is a series of rules that dictate
1. What a type is

2. What we can do with types

Type
A category of items that share properties.
For example, for an e
Remember
lexer — parser — evaluator

This was a lie, for many practical purposes

type checker
lexer — parser ——— evaluator
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The type checker is sometimes part of the evaluator in dynamically typed languages, but it hap-
pens before the evaluator in statically typed languages.

Type checker a la Operational Semantics
The type checker rules can be written in a way similar to what we did with operational semantics:

G +  true : bool

context expression type

Compare that to:

A ; true = true
~ S—— S——
environment expression value

Another rule for type checking, for the other boolean constant:

G + false : bool

Another, but for integers:

Gkn:int,neZ

Now to deal with variables:

And for addition:

G ke :int G F ey :int + :int — int — int

GFe) +e,:int

Example
1 + 2 becomes:

GF1:int GF2:int + :int — int — int

GF142:int
Therefore, you can use the expression 1 + 2 wherever an int is expected.

Another rule, for if:

G I e4 : bool Ghley:t GFeg:t

G Fif e; then e, else eg

Another rule, for let:

GFe b G,x:th eyt

GFlet x =e; iney:ty

Another rule for functions:
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Gz:tjFe:t,

Grfun (z:t)) ety = t,

Example
You can build up multiple function calls from a single function call:

Gz:t)Ffunx wfuny—sx+y:t; =>t, =t
Another rule for function calls:

Glej ity =ty Gley:ty

GhFeleg:ty

Note that (fun z — « + 1)4 and let = 4 in = + 1 have very similar meanings: they both bind
the variable z to a particular value, 4.

Well-typed

A program is well-typed if the language’s type system accepts the program.
This is well-typed:

if true then 1 else 4

This is not well-typed and not well-defined:

if "hello" then 2 else 5.0

This is not well-typed but is well-defined:

if true then 1 else "hi"

Undefined semantics

An expression e is undefined if the langauge has no semantical definiton of e.

This does not mean that it is an error: 4/0 will result in an error, but it is defined as that, and so
it is not undefined. (It also passes type checking.)

Type-safety
A language is type-safe iff for all well-typed programs p, p is well-defined. Well-defined is not
well typed.

For example:

if true then 0 else "hello"

is not well-typed, despite being well-defined.
C is not type-safe:

char[4] buff;
buff[3];

That program is well-typed but not well-defined because the buffer has uninitialized memory,
and that results in undefined behavior according to the C standard.

Soundness
A static analyzer (e.g., type checker) is sound if when it claims a property hold, it does.
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Completeness
If when a property holds true for a program, the analysis supports it.

Dynamic type checking
Type checking is done at runtime.

Static type checking
Type checking is done at compile time before the program runs.

Goals
Why are there so many type systems?

We'd like to prove type systems. In doing so, we want to have a sound and complete argument,
so we want soundness and completeness in our analysis.

Unfortunately, it is impossible to create a perfect type system by the halting problem. It is im-
possible to do all three of these:

1. The type checker can halt

2. The type checker is sound

3. The type checker is complete

Typically, languages choose to never halt and then they choose between soundness and com-
pleteness.

Let f : program — bool be the function that determines if a program will halt. Create a new
function/program called g and halt if g will halt, using f. Now, what is f(g)? You can’t give an
answer, so you can't solve this problem perfectly.

Generic Typing
Such as polymorphism.

Subtyping
If you have some datatype that is a subtype of something else, you can replace the supertype
with the subtype, and it will still work.

Dependent Typing
Types of particular properties.
For example, List.hd: int list -> int iff the list’s length is greater than O.

Liskov Substitution Principle

P(x) is a property about objects x of type T'. Then, P(y) is a property about objects y of type
S,ifS C T.

—
subtype

VeeT,P(x)=if SCT,Vye S, Py)

For example, if:
class Circle extends Shape { }

Then if P(Shape), P(Circle)

Addition Example
This is the case in OCaml but it doesn’t allow adding floats, as you can in, e.g., C and Java.
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G ke :int G F ey :int + :int — int — int

GFe +e,:int

This is an expansion of the property to stuff of the same type. This still is not complete, because
you can often do stuff like 4 + 7.3.

GFe :t GFey:t t:t—t—t

GhFe +ey:t
Using subtyping, you can add this:

Fe:t ty Tty

Ghre:t,

where floats and ints are both subtypes of a larger type, such as number, and therefore can be
added by the previous definition.

Then:

G F e; : number G F ey : number

G F e; + e, : number

Gt n:int G+ f : float

e : int e : float

G F e :number G F e: number

Records can Subtype in OCaml
match recordl with
{x = a} => (* ... %)
{y = b} -> (¥ ... ¥)
_ => failwith '"die"
Either of these types works for the type of recordl:

type rl = {x: int; y: int}
type r2 = {x: int; y: int; z: bool}

This can be explained with subtyping relations as:
{x: int; y: int} C {x: int}
{x: int; y: int; z: bool} C {x: int}
{x: int; y: int} C {y: int}
{x: int; y: int; z: bool} C {y: int}
For completeness, these are also true:
{x: int} C {x: int}
{y: int} C {y: int}
This works because {x: int} is a more general type than its subtypes.

This can be expressed as:
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m>n

G A{ky Ty} i {k; o T3}
You can also subtype types inside the type:

G+T,CP,

GrHA{k,:T,}: {k;: T;}

Subtyping properties
Subtyping relation has some properties.

Let A, B, C be types:
1. Reflexivity: AC A
2. Transitivityy AC BABCC=ALCC

Transitivity is a preorder: pre-ordered relation.
Random note
Modules are libraries that you can define within your own code.

You can create interfaces and then use subtyping with that.

Lambda Calculus

Our goal is to create a model of computation. There are different levels of computation power
(what can be computed).

Turing Machine
It is the most powerful model of computation. It can solve any solvable problem.

For example, it cannot solve the halting problem because it is unsolvable. But it can solve any-
thing that can be solved, like sorting a list.

A Turing machine has an infinite “tape” of memory with infinite cells. It has a pointer with an
attached state machine that moves the pointer left or right and writes and reads data as input
to the state machine.

A Turing complete language is one that can simulate or map to a Turing machine.
Most languages, such as C, Java, OCaml, Rust, Python, and others, are Turing complete.

There are other more nontraditional options that are also Turing complete, like Minecraft Red-
stone or Magic the Gathering.

Lambda calculus is another Turing complete language that is very minimal.

Parsing
Here is the grammar:
e—z x € variable
| A\z.e
|ee

| (e)

Examples of things that work:
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Rules
This grammar is ambiguous:

Ambiguous Example
Az.xz x a could be (Az.xz x a), (A\x.x ) a, (\z.x) T a

Rule #1

The scope of a function’s body extends to the end of the expression or the first unmatched
(within the body of the lambda expression) right parenthesis.

Operational Semantics
Free variables (a binding does not exist in A):

Aix >z
Bound variables (a binding exists in A):

Ax) =y

A;x >y
Functions:

e—e
A: dz.e = Az

Reduction:

Aje; — eq Ajey — ey

Aje ey —e36€y
Function application:

Ajeq = Ax.eg Ajes — ey Az ey es — e

Asejeq — €5

Example Application
Alz) =y

A r.x — Az Ay —y Az :yz—y




Beta Reduction
It is the process of calling a function:

(Az.zy)a—ay
(A.(Ayzy)) a) b= (A\y.ay)b—>ab

After 2 beta reductions, it is now in S-normal form (BNF), which means that the expression
cannot be reduced further.

This is also in S-normal form:
(a(Az.x))
Rule #2
If we have > 3 expressions, evaluate the leftmost two first.
abcd=((ab)c)d
Example
Axa)be— (Az.xza)b)c— ((ba)c)—bac
a(A.zy)b— (a (Az.zy))b
Since (a (Az.x y) is not a function, it cannot be applied to, so it is already in S-normal forml

Az zxy)ab— Axzxy) b—oby

This is the case because of shadowing.

Alternatively, you could have done (Az.Az.z y) a b — (Aa.a y) because they are a-equivalent:
they represent the same thing, a function call that adds y to your input.

Free variables must the same for a-equivalence. For example, (Az.x) b ¥ (Az.x)a.
Lambda Calculus Continued

A Turing complete language is one that can map or simulate a Turing machine.

A Turing machine (TM) is a theoretical machine that can solve any solveable problem.
A universal TM (UTM) is a Turing machine that can produce other Turing machines.
Lambda calculus is a minimal Turing complete language.

e—x x € variable

| A\z.e

|ee
| (e)

The scope of a lambda function starts at . and extends right until the end of the expression or
until an unmatched ) is seen, whichever comes first.

I will use square brackets for the scope:

Example 1:
A\z.x T — A\x.[z x]
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Example 2:
(Az.z) x — (Az.[z]) =

Example 3:
Mzzz)zy— Azjzzz]))zy

Example 4:
M.z (zy)2)a— Az (zy) 2]) a

Example 5 (scopes can be nested):
Ay z (Ayby (Aa.aa) zy)u) b— (Az.[y z (Ay.[by (Na.la a]) z y]) u]) b

Example 6 (rules can end at the same time):
Ar.a b (Ay.y z) = Az.fa b (A\y.[y 2])]

Example 7 (rules don't have to end at the end):
a(Az.zdy.yy)b—a (Az. [z Ay. [y y]]) b

Lambda calculus is left associative: when given more than 3 expressions, evaluate the leftmost
first.

abc=(ab)c=((ab)c)
You can go against that order by adding explicit parenthesis:
a(be)#abe
This rule can be chained:
abcd=(ab)cd= ((ab)c)d= (((ad)c)d) =
Explicit parentheses take precedence:
abe)yd=(a(bec))d= ((a(bc))d)

More:

Modifying lambda calculus expressions:

2 ways:

B-reduction: calling lambda functions.

If you chain multiple beta reductions together, you can get to S-normal form.

Note that S-normal form is a property of an expression that states it cannot be reduced any
further, and B-reduction is an action performed on an expression.

Example 1:

Axzr)a=aa
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Definitionally, 8-reduction is taking an expression of the form (A var. body) param and replac-
ing var anywhere in the body with param.

Keep in mind bindings and shadowing while doing so.
x Ax. x is in beta normal form, even though there is a lambda function.
An example of this is
M. zy(My.y)z)a= ay (A\y. y) a
Note that you cannot go any further due to left associativity.
Example of B-reduction:
Az. (A\y.zy)zy)ab
= (Ay.ay)ayhb
=aayb
Almost the same thing:
Az. (A\y. zy) zy) (ab)
= (My. (ab)y) (ad)y
= ((ad) (a b))y
You can see how parenthesis can really make a difference.
a-conversion: A process that renames all of the bound variables in a consistent manner.

We can then say two expressions e; and e, are a-equivalent if e; can be a-converted to e, or
e, can be a-converted to e;.

This can help readability by making shadowing not a problem.
M.z Ar. z z) = (\y. y Az z x)
But you need to keep the semantics of the expression the same:
M. (My.zy)a)y=(Ay.yy) a=aa
If we a-convert then reduce:
(Az. (A\y. z y) a) y
- Ax. (Az.xz2)a)y

= ((A\z.y 2) a)
=ya

The second one is correct:
¢ All bound variables should stay bound
o All free variables should stay free

This sometimes makes a-conversion necessary for preserving the meaning of an expression.

Az. z x) (Az. z ) = (A\z. ¢ ) (A\z. = x)

Oh no! Infinite loop!

Look at this example:
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(M. z z)((\y. y a) b)
This can be evaluated in two different ways:
M.z z)(My.ya)b) = (Az. z z)(ba)= ((ba) (ba))
Or
((Ay. y a) b) (Ay. y a) b)) = (b a) (A\y. y a) b)) = (b a) (ba)
The first example is called eager evaluation, and the second is called lazy evaluation.
Now check this out:

Az. y)(Az. z z) (A\z. = x))

Try evaluating this eagerly (parameters first); you will simply have an infinite loop.
If you have lazy evaluation: y.
If an expression has an infinite loop, we say that an expression has no S-normal form.

If there is no infinite loop, then both eager and lazy evaluations will evaluate to the same -
normal form.

If lambda calculus could do imperative programming, lazy evaluation might run, e.g., a print
statement twice, which would not be the same as eager evaluation.

Let’s start mapping lambda calculus to calculations, which then can be turned into a Turing
machine.

This is called encoding, for example, 0101 : 5.
You encode/give meaning to the language of things you care about.
Here is an example of an encoding, church encoding:

(Az.\y.z) : true

(Az.Ay.y) : false
Additionally:

a b c:if a then b else ¢

For example:

if true then false else true <> (((Az. Ay. ) (Az. A\y. y)) (A\z. A\y.z))

if true then false else true = false
((Az. Ay. ) (A\z. Ay. y)) (A\z. Ay.z)) =
Ay. Az, A\y. y)) (A\z. A\y. =) =
(Az.\y.y) = false
You can use this to then become and use logic from there to build up. You can also make fixed-

point loops and then use those to make recursive functions. From there, you can finally make a
function like factorial, all in lambda calculus.

Garbage Collection (GC)

It frees data that you no longer need.
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Different languages do it differently:

e Automatic garbage collection (OCaml, Java)
e Manual garbage collection (C)

¢ No garbage collector (Rust)

Garbage collection only acts on the heap, not the stack. This is because on the stack, popping
and pushing is already handling getting rid of the garbage.

Languages/runtime systems “know” when to push and pop to the stack.

We know two things:
¢ the lifetime of stack variables: they stop existing at the end of the scope
e The size of data on the stack

Actions/States | In use Not in use
Free Really bad (use-after-free, UB) | Good!
Not Free Good! Not ideal: memory leak, you can eventually

run out of memory/go to swap and slow
down significantly, and you keep memory
that may have sensitive data

How can we determine if something is in use?
¢ We need to take a conservative approach: if you can't tell, don’t free

We know something is alive if the stack can see it.
Reference counting: Can anything be seen in the data? If not, free it.

In practice, you keep a counter to how many times something can be seen. If another item can
see something, you add one to the count for that element. When that something is removed,
subtract one.

Problems:
e Cycles will make data leak.
¢ You have to spend space on storing the counts for every piece of data in the heap.

Tracing garbage collection

Mark and Sweep
Trace through the stack and see what is reachable. Then, trace through the heap and free every-
thing that isn’t reachable.

Problems:

e You have to keep track of all of the different places of memory

¢ You have to come up with times to stop the entire program, and the runtime is dependent on
the number of objects allocated.

e Does not defragment

Stop and copy
Partition the heap into two sections, dead and alive.

When allocating from the stack, allocate into the alive section.
Try to copy everything that is reachable from the stack into the dead section.

Then, swap the names of the sections.
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The next time you switch again, you will overwrite the data in the dead section.
This does defragment.

Problems:
e Halves your memory
¢ You have to stop the entire program

Tiered data

Stuff that has just been allocated is more likely to be deallocated sooner and to be less complex,
S0 you can use a faster method, like reference counting, on that part.

Although you don’t have memory safety issues in GC'ed languages, they can be rather slow. Rust
seeks to make it both safe and fast.

Rust does this by creating a subset of safe programs that the compiler can determine are safe.
As time goes on, the difference in the size of sets between safe programs and programs the
compiler can determine are safe shrinks.

Rust

First Rust Program

fn main() {
println! ("Hello, World!")
ks
1. No semicolon on line 3. (because println! returns nothing, and main also returns nothing

(and by nothing I mean (), the unit type))

! as part of println!

We have a function main defined using the fn keyword

Uses {} for scopes

No public keyword on the main function

println! seems generic: compare to print_string/print_int in OCaml.
No class at the top unlike Java

No importing for the println!

No types on the main function

VPN, WON

[ash@ashpc rust]$ bat hw.rs

|
| File: hw.rs
|
|
| // hw.rs
| fn main() {
| println! ("Hello, World!")

| 3

W NP

[ash@ashpc rust]$ rustc hw.rs
[ash@ashpc rust]$ 1s

hw hw.rs

[ash@ashpc rust]$ ./hw

Hello, World!

Rust’s Goals for cleaning up memory
Why is C considered faster than e.g. Java?
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It doesn’t have a garbage collector.

» Like Rust

It can cast things easily

» unlike rust (usually, ignoring bytemuck and unsafe)

memory arithmetic

» Rarely useful

Pointers

» Rust also has these, safely in the form of pointers

We can control how much memory we will allocate.

» Useful when we don’t have a lot of memory, like on microcontrollers, IOT devices, and other
low-spec devices.

» Rust allows for this (partially)

Last time, we discussed GCs. They were typically slow and bulky, particularly so for the tracing
ones. Rust doesn’t want to use a GC; it wants to do something else.

We know that the stack automatically GCs, so can we use that?

For the stack, we need to know:
1. How long does it exist on the stack?
2. How much space does it take up?

The problems with GC's are:

1. Use after free

2. Double free

3. Dangling pointers

4. Memory leaks (not too serious)

Rust wants to prevent these to the best of its abilities. Some it can, some it can’t. Regardless,
we need rules to terminate if something is safe.

Another rust program

fn main() {
let x = 37; // <- we have let bindings, like in OCaml
// the type of "k was guessed via type inference to be 132" (the default integer

type)

k4

Rust doesn’t have an 1int type, but it does have:

e 18/u8: signed/unsigned 1 byte of memory

e il6/ulé: signed/unsigned 2 bytes of memory

e i32/u32: signed/unsigned 4 bytes of memory

e i64/u64: signed/unsigned 8 bytes of memory

e 1128/ul28: signed/unsigned 16 bytes of memory

e isize/usize: signed/unsigned machine-sized pieces of memory (size of an offset, usually
used for indexing into arrays)

And for floats:
e £32/f64, single and double precision floats (f16/f128 coming soonish)

If statement

if true {
3
} else {
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3

1. Uses brackets and has no then keyword
2. Both branches must return the same type

Semicolons
In OCaml, there were very few semicolons: OCaml has expressions (things that evaluate to val-
ues), not statements.

Languages that use statements (C, Java) primarily usually use semicolons, and those that use
expressions (OCaml) primarily don’t.

Rust has both.
if is an expression in rust, therefore you can do

let y = if true {
3

} else {
4

+;
and then y will contain the value 3 after evaluation.

Consider the difference between the type of a statement and the type of an expression: expres-
sions have values, some T and statements do not. The type of nothing in OCaml is the unit type
(O)), and Rust is the same.

Rust has code blocks:

{ *(statement;)* expression:T?}: T
{ *(statement;)* }: ()

For concrete examples:

{1; 2; 3}: 132

{1; true; false}: bool

{false; true;}: ()

{println! ("hi")}: () // println! returns ()

Because println! returns (), it doesn’t matter if you put one at the end of the block. This means
that the following also does the same thing:

{println!("hi");}: (O
If statements must have the same type on both branches, this will not compile:

if true {
33

} else {
4

ks

Without an else branch, () is the type of the if. Concretely:
This does not compile:

if true {
4

}
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This does compile:

if true {
45
ks

What Rust is protecting you from

void main() {
char* x = malloc(sizeof(char) * 6);
strcpy(x, "hello");
char* y = x;
free(y);
printf("%s", x); // OH NO! use-after-free
free(x); // OH NO! double-free

ks
These errors are problematic and annoying.
Rust solves this by having ownership.

The Three Rules of Ownership

1. Every value has an owner.

2. Each value has one owner.

3. When the owner goes out of scope, the value is freed.

An example of this:

fn main() {
// Create a string on the heap with the value "hello"
let x = String::from(""hello");
// % is the owner of the "hello'" data
let y = x; // ownership has moved from y to x.
// y is the owner of the "hello" data.

// This code would not compile: x has been moved out of
// Y is now the owner; x cannot refer to that memory anymore.

// println! ("{x}");

// Yy goes out of scope, so the string is dropped and the "hello" data is freed
// % also goes out of scope, but because it does not owner anything, nothing
happens

3

fn main() {
let x = String::from('"hello");

let y
X

} else {
String::from(''bye')

if false {

}s

println! ("{y}")
// Does not compile, because x _could_ have been moved out of.

// println! ("{x}")
}

An example with functions:
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fn main() {
let x = String::from(""hello");
// % is the owner of "hello"
// then ownership 1is passed from "x° to “a 1in the function
let y = f(x);
// upon function return, y has ownership of f's return.

// Does not compile: we don't own "X anymore, 'f does
println! ("{x3}");

3

fn f(a: String) -> String {
// a is the owner of "hello"
let b = a.len();
// b owns the result of the len call
println! ("{b}");
// ownership goes to the caller
a

}
Alternative f function:

fn f(a: String) -> usize {
// a is the owner of "hello"
let b = a.len();
// b owns the result of the len call
b

// a 1is dropped, as it has gone out of scope

ks
Borrowing:
fn main() {
let x = String::from('"hello");
let y = f(&x); // f borrows "hello"
// upon return, y 1is also borrowing hello.
// This does compile:
println! ("{x3}");
println! ("{y}");
ks

fn f(a: &String) -> &String {
// “a is borrowing "hello"
let b = a.len();
println! ("{b}");
a

¥

2 Rules of References

1. We can have only one of these:
1. We can have > 1 immutable borrows
2. We can have 1 mutable borrow

2. References must always be valid

fn main() {
let x = String::from(""hello"); // % owns a "hello" on the heap
let y = String::from("hello"); // y owns a _different_ "hello" on the heap.
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There is no string interning by default in rust. If you want that, there are crates or you could
use Arc<stro>.

fn main() {

let x = 42; // x is the owner of 42 on the stack

let y = x; // the value of 42 is copied on the stack and y is an owner of the
new 42.

printlnt ("{},{}", %, y);
ks

The above works because 32 is a copy type. Previous instances that have been moved from
remain valid.

The copyness of a type is defined by the Copy trait.

Traits in Rust

Traits are contracts or guarantees about something. If a datatype has the copy trait, we expect
it to behave in a certain way and have certain properties. This is similar to interfaces in Java.

The Copy trait says that instead of ownership being transferred, the value will be copied into
another instance.

Other examples of traits are Clone, Drop, PartialEq and Iterator.
String Literals

String literals are different from Strings. String literals are references with a 'static lifetime
(lives forever).

Borrowing/References
If you transfer ownership, you cannot use it anymore. This is not always ideal: it's often better
to use references.

References are pointers, but safer. “References are Rust’s lingo for a pointer.”

2 Rules of References
1. Only one of the following can be true:
1. We can have > 0 immutable references
2. We can have only 1 mutable reference.
2. References must always be valid

Mutability
Mutability is a property of the variable, not the value:

let x = 4; // A 4 exists somewhere, but you cannot write data there.
X += 1; // Compile error: x is not mutable

let mut x = 4; // A 4 exists somewhere and you _can_ write data there.
x += 1; // Totally valid to mutate

An example with strings:

let x = String::from("hello");
x.push_str("bye'); // x does not have write access.

let mut x = String::from('"hello");
x.push_str("bye'"); // Valid to mutate

Another example, but now with references:
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let y;
{
let x = String::from('"hello");
y = &x;
} // % goes out of scope
println! ("{}", y); // y points to data that was freed, so this is not sound.
// the "borrowed value does not Llive long enough"

On the other hand, this is fine:

fn main() {
let x = String::from('"hello");
let y = &x;

println! ("{},{3", %, y); // this is fine
// note that println! automatically borrows

}
This is also fine:

fn main() {
let mut x = String::from("hello");
let y = &x;
println! ("{3},{3}", %, y); // this is fine
// note that println! automatically borrows

ks
The mutability of a reference does not rely on the variable binding.
However, this is not fine:

fn main() {

let mut x = String::from("hello");

let y = &x;

x.push_str("hello");

println! ("{3},{3}", %, y); // y cannot be used anymore because you invalidated the
reference by mutating the owner of the data.

}
This is not fine:

let mut x = String::from("hello");

let y = &mut x;

println! ("{},{3}", %, y); // y exists as an mutable reference at the same time x is
trying to be used.

This is fine:

let mut x = String::from("hello");
{
let mut y = &mut x; // y is a mutable reference to x, you cannot access x through
X anymore
y.push_str(" world"); // x is mutated through y
} // y goes out of scope, so x is now accessible through x again.
println! ("{}", %) // % is valid.

This is not fine:

let x String::from("hello");
let y = &mut x; // cannot borrow immutable variable as mutable
printlnt ("{}, {}", %, y);
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What does this prevent? Data races. Not having readers when you have a writer means that you
cannot have data races.

This also prevents use-after-free and dangling pointers.

In sum:

1. &mut — &mut: First becomes invalid

2. &mut — & Not possible/but you can do &mut — & and &, and if the first is a variable, it will
become mutable again after the second lifetime ends.

3. & — &mut: not possible

4. & — & both remain valid

Non-lexical lifetimes

let mut x = String::from("hello");

let y = &x;

printtnt("{}, {}", y, %);

x.push_str("bye'"); // valid because y stopped existing before this line due to NLL

println! ("{}", %)
If you had assumed that this wouldn’t compile because of the above logic, this actually does

compile because of NLL. Lifetimes' end at the place they are last used.

Borrow Checker

The borrow checker is the name of the part of Rust’s type checker that checks if references are
correct. It validates that reference and ownership rules are being followed.

All references have a lifetime that is part of it's type:

let x: 132 = 32;
let y: &'a 132 = &x;

This lifetime, ' a, tells you how long a reference should live. This lifetime is always implicit (ex-
cept for 'static) inside functions, and may be explicit in function declarations.

The 'static lifetime means that the variable will exist for the entirety of the program.
'a is just some lifetime. It doesn’t have to exist for 'static.
Example of lifetime errors:

fn identity(x: &String) -> &String {
X

ks

fn main() {
let y;
{

let x = String::from("hello");
y = identity(&x);
println! ("{y}");
ks
println! ("{y}"); // This does not compile. The lifetime of y, 'a is only for the
existence of the owner, "x°, and "x  no longer exists.
// If this did compile, it would be a use-after-free, which is impossible in safe
rust

3

'of non-Drop types, including mutable and immutable references
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Another example

// This function does not compile, because the rust compiler does not know what
lifetime the output should have.
fn longest(x: &String, y: &String) -> &String {
if x.len() > y.len() {
X
} else {

Y
3
i

fn main() {

let y;

let z = String::from('"Hello");

{
let x = String::from("bye'");
y = longest(&z, &x);
println! ("{y}")

ks

println! ("{y}") // Even after correcting longest,  rust doesn't know the dynamic
values of z and x, so it cannot know that z, the owner of the reference, will exist.

¥

Lifetime Parameters
Rust has rules to automatically determine lifetime parameters if none are given. That is why the
first example did compile.

1. Every input reference gets a unique lifetime parameter.

2. If we have one input lifetime and one output lifetime, the output lifetime is constrained to
the input lifetime.

3. If any of the input lifetimes are for self, and the output has a lifetime, then the output lifetime
is constrained to self.

This does not cover multiple input references forming one output reference. You may also want
to use explicit lifetimes to override the default behavior.

By default, Rust infers this:

fn longest<'a, 'b>(x: &'a String, y: &'b String) -> &String { ... }
The output does not have a defined lifetime, so this does not compile.

This is the corrected version:

fn longest<'a, 'b, 'c>(x: &'a String, y: &'b String) -> &'c String

where

a: 'c,
'b: 'c,
{
if x.len() > y.len() {
X
} else {
Y
ks
k4

(Read : as “outlines”, so 'a outlives 'c and 'b outlives 'c)
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Note that in this case, because of variance?,

fn longest<'a, 'b, 'c>(x: &'a String, y: &'a String) -> &'a String { ... }
is equivalent to the above.

If 'ais longer than 'b, 'a can be used wherever you expect a 'b.

Another inference example:

fn f(x: &i32, y: &f64, z: bool, w: &String) -> bool

The above is equivalent to:

fn f<'a, 'b, 'c>(x: &'a 132, y: &'b 64, z: bool, w: &'c String) -> bool
If we want to, we can reject Rust’s default choices, but that requires explicit lifetime parameters:
fn f<'a>(x: &'a 132, y: &'a f64, z: bool, w: &'a String) -> bool
Another inference example:

fn f(x: &i32, y: 64, z: bool, w: String) -> &bool

The above is equivalent to:

fn f<'a>(x: &'a 132, y: 64, z: bool, w: String) -> &'a bool

You can override this (but why would you):

fn f<'a, 'b>(x: &'a 132, y: f64, z: bool, w: String) -> &'b bool
Another inference example:

fn f(&self, x: &i32) -> &bool

The above is equivalent to:

fn f<'a, 'b>(&'a self, x: &'b 132) -> &'a bool

You can override this:

fn f<'a>(&self, x: &'a 132) -> &'a bool

Structs and Enums

Here is an example of a struct:

struct Rectangle {
height: u32,
width: u32,

ks

This is similar to Java’s classes. Note that it does not have inheritance, but it does have some-
thing similar to interfaces through traits.

let rl = Rectangle {

height: 42,
width: 84

s

let r2 = Rectangle {
height: 24,
width: 48

I

2See the nomicion if you want more details.
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println! ("{}", rl.height); // you can access fields of a struct
You can create methods and associated functions on a struct:

impl Rectangle {

// An example of a method

// Below, there is a doc-comment.

/// Returns the area of the rectangle

fn area(&self) -> u32 {

self.height * self.width

ks

// An example of an associated function

fn new(height: u32, width: u32) -> Self { // Self refers to the type of the object
you are implementing on

Rectangle { height, width } // if you have the same variable names as

attributes, you don't need to duplicate it like "height: height’

ks
ks

println! ("{}", rl.area()); // -> 3444
println! ("{}", Rectangle::new(50, 50).width); // -> 50

You can implement traits:

impl Clone for Rectangle {
fn clone(&self) -> Rectangle {
Rectangle::new(self.height, self.width)

ks
¥

let r4 = rl.clone()
Enums are also a thing in rust:

enum Color {
Red,
Blue,
Green

3

let ¢l = Color::Red;
Note that structs add types together, and enums can or types.
You can match on enums:

let out = match cl {
Color::Red => 0,
Color::Blue => 1,
Color::Green => 2,

15

You can use an underscore (_) to ignore all other branches if you don’t want to be exhaustive,
but matches must be exhaustive.

Enums can contain types:

enum Pixel {
Rgb(u32, u32, u32),
Rgba(u32, u32, u32, u32),
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let pl = Pixel::Rgb(0, 0, 255);
let p2 = Pixel::Rgb(255, 0, 255, 0);

match pl {
Pixel::Rgba(r, g, b, @) => r + g + b + a,
Pixel::Rgb(r, g, b) => r + g + b,
ks
impl Pixel {
fn blue_pixel() -> Self {
Pixel::Rgb(0,0,255)
ks
ks

You can create types and implement on them in many ways:

struct User {
name: String,
age: u32,

}

impl User {
// fn name<'a>(&'a self) -> &'a String is what is assumed for the lifetimes
fn name(&self) -> &String {
&self.name

3

// fn weird(&self, x: &String) -> &String does not compile,
// because the rust compiler assumes the lifetime comes from self,
// but in reality, 1it's coming from x, not self.

// Further, fn weird<'a>(&'a self, x: &'a String) -> &'a String
// works, but is suboptimal because it then requires both x and self to have the
same lifetime.
fn weird<'a>(&self, x: &'a String) -> &'a String {
x // Does not

ks
¥

let ul = User {
name: String::from(''name"),
age: 10_000,

Impl in paramater
pub trait MyTrait {}

fn myfunc(x: impl MyTrait, y: u32) -> bool {
false
ks

This requires x to implement MyTrait, and you can only call functions that require x to be
MyTrait, or require less.

Generics

enum MyOption<T: MyTrait> {
Some(T),
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None,

3

T then must implement MyTrait.

Smart Pointers
This can be thought of as a struct:

struct &[T] {
ptr: &T,
len: usize,

3

Wrappers of pointers are generally called “smart pointers.” A subset of these in Rust are fat
pointers, specifically anything that points to an unsized type. These are the unsized types:

e [T]

e Any struct containing an unsized type

e dyn Trait

There are also smart pointers, like String:

let sl = String::from("hello");
struct String {
// *mut is the "real" rust pointer that allows you to do stuff like you would 1n

C
ptr: *mut u8, // -> "hello"
len: usize, // 5
cap: usize, // 5

ks

Typically, smart pointers have the Deref, DerefMut and Drop traits.

The Deref traits allow you to use a smart pointer like a real pointer but with more safety and
niceness. It has the deref function that returns a reference.

The Drop trait includes a drop function that should deallocate all of the memory the structure
owns. This is similar to a destructor in C++.

The most basic example of a smart pointer is Box, which is explicitly allocated on the heap.
Because it is on the heap, moving data only moves the pointer rather than all the data.

Box can also store unsized types (such as trait objects) and is always a constant size. This is
useful for recursive data structures.

This would fail:

// ERROR: the size of the 1list cannot be found because finding the size is recursive
enum List<T> {

Cons(T, List<T>),

Nil,
ks

But this does work:

// Note the generic: this means it can store any type. See the last lecture for
slightly more information
enum List<T> {

Cons (T, Box<List<T>>),

Nil,
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Now to use the list:

use List::{Cons, Nil};
let x = Cons(l, Box::new(Cons(2, Box::new(Cons(3, Box::new(Nil))))));

Note that Box: :new takes ownership. This can cause problems. For example, you can’t do:

let y = Cons(5, Box::new(x));

let z = Cons(6, Box::new(x)); // % was moved in the above line.

You can add Clone to make this possible, but that can be inefficient and requires T: Clone.
Rc can make that process more efficient by not requiring T: Clone and not allocating more
memory.

Rc does this via reference collection. It increments on clone and new, and decrements on Drop.
It deallocates when the count reaches zero.

use std::rc::Rc;

enum List<T> {
Cons (T, Rc<List<T>>),
Nil,

3

And then to use it:

use List::{Cons, Nil};

let x = Rc::new(Cons(1l, Rc::new(Cons(2, Rc::new(Cons(3, Rc::new(Nil)))))));
let y = Cons(5, x.clone());

let z = Cons(6, x.clone());

drop(x);

// I can still use "% and 'y .

Security

Yesterday, China hacked the UK’s Ministry of Defense, gaining access to the armed forces’
personal details. Change Healthcare, a UnitedHealth subsidiary, was attacked by ransomware,
which interrupted payment processing. Equifax’s data was breached, leaking tons of PII (per-
sonally identifiable information).

PII includes Social Security Numbers, credit cards, addresses, payment history and more.
It would be good if these things didn’t happen. How can we prevent that? Through security.

We want only authorized users to have access to this information. This means ensuring cor-
rectness.

When creating a secure product, you should always assume an active and malicious adversary.
Testing doesn’t solve this problem; it just shows that some inputs don’t result in bugs.

Correctness
Does the program behave the way you want it to?

Attacks

Attacks want to:

e Break confidentiality (unauthorized reads)
» Buffer overflows, etc

e Break integrity (unauthorized writes)
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» Ransomware
¢ Break availability
» DDOS

To prevent attacks:

e Make attacking harder

e Make attacking more expensive
e Thereby lowering the ROI

Attacks are common because
e There are millions of lines of code
» there will be bugs
e the barrier to entry for attacks is very low
e Normal users don’t try to find bugs
e Fixing bugs costs time and money

Our goal is to minimize undesired behavior:

e Think like attackers

e Address bugs and design flaws

e Understand both the software and hardware problems

Buffer Overflow
A family of vulnerabilities stems from going out of the intended bounds of an array.

void other() {
char password[5];
char username[5];
/] ...

ks

In this code, both the password and the username are on the stack, and if you index past
username, you will hit the password.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void other() {
char password[5];
char username[5];
strcpy(password, 'pass'');
gets(username); // !!! you can now easily buffer overflow into the password
// ...
ks

This was the basis for the Heartbleed OpenSSL vulnerability. Enforcing type safety prevents this.
Command injection cannot be prevented with type-safety.

Command Injection

Code as part of user input is evaluated accidentally.

import os
a = input("enter a file to cat: ")
os.system("cat " + a)
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If you input, for example, ; rm—rf —no-preserve-root /, that would delete all files on the
computer because the semicolon separates commands.

You should instead actually use the correct methods for this that allow you to specify arguments
directly rather than going through a shell.
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