
CMSC451 - 0301
Ash Dorsey
ash@ash.lgbt

Last updated 2024-11-19.

Contents
Stable Marriage Problem .. 3

Example .. 3
Graph Algorithms ... 4

Representing a Graph ... 4
Adjacency (bit) Matrix ... 4
Adjacency list .. 4

List all edges .. 4
Adjacency list .. 4
Adjacency matrix ... 5

Depth-First Search .. 5
Code of depth-first search ... 6
Adjacency matrix vs adjacency lists .. 6

Connected components .. 7
Find connected components ... 7
Biconnected ... 7
Articulation point ... 7
Biconnected components ... 8

Find the tree edges and back edges ... 8
Example Outcome ... 9

Find the biconnected components ... 9
Pseudocode ... 9
Alternate Algorithm .. 10

Directed Graphs .. 11
DFS .. 11
Directed Acyclic Graph ... 12
Strongly Connected Graph ... 13
Strongly Connected Component .. 13
Breath-First Search .. 14

Order Notation ... 14
Examples .. 14
Limit Definitions ... 15

Greedy Algorithms ... 15
Minimum Spanning Tree .. 15

Theorem: Adding Minimum Edges Keeps minimum spanning tree 15
Kruskal’s Algorithm .. 15
Prim’s Algorithm .. 16

Interval Scheduling ... 17
Theorem ... 17
Proof ... 17

Minimize Lateness ... 17

1

Algorithm ... 17
Theorem ... 17
Proof ... 17

Caching ... 18
Least Recently Used (LRU) cache ... 18

Huffman Encoding ... 18
Prefix Code ... 18
The real thing ... 19

Divide and Conquer .. 20
Merge Sort ... 20
Other Examples ... 20
Counting Inversions .. 20
Closest Pair ... 21

What about on a line? ... 22
On a plane! ... 22

Strassen’s algorithm .. 22
Carry look ahead addition ... 23
Log Transform ... 23
Fast Fourier Transform ... 24

Dynamic Programming .. 27
Fibonacci ... 27
Subset Sum .. 28
Knapsack Problem ... 30
Chained Matrix Multiplication ... 31
Segmented Least Squares ... 32
Shortest path .. 34
Transitive Closure ... 36
Random Note ... 37
Segmented Alignment .. 37

NP-completeness .. 38
Hamiltonian Cycle .. 38

Theorem .. 38
Proof ... 38

Traveling Salesman Problem ... 39
Proof ... 40

Perfect Marriage Problem .. 40
Proof ... 40

3-Coloring .. 41
Proof .. 41

Subvector Sum ... 43
Theorem .. 44

Subset Sum ... 44
Theorem .. 44

k-Coloring ... 44
Theorem .. 44

Independent Set ... 44
Theorem .. 45
Vertex Cover .. 46

2

Theorem .. 46
Algorithm .. 46

Planar Graph .. 47
Kuratowski’s Theorem .. 47

Stable Marriage Problem
Find a stable arrangement from 2 equal-sized lists of preferences.

Example
Let’s say we have 3 pairs of people.

Number Men’s women preferences Women’s men preferences

1 1,2,3 1,2,3

2 1,2,3 2,3,1

3 1,2,3 3,1,2

Man 3 starts.

He proposes to women 1, and women 1 accepts him.

Number Men Women

1 3

2

3 1

Man 2 then goes and proposes to 1. Women 1 accepts, and rejects man 3.

Number Men Women

1 2

2 1

3

Man 3 then tries again, and goes to women 2, and she accepts.

Number Men Women

1 2

2 1 3

3 2

Man 1 then proposes to women 1, and she accepts, rejecting man 2.

Number Men Women

1 1 1

2 3

3 2

Man 2 then proposes to women 2, and she accepts, rejecting man 3.

3

Number Men Women

1 1 1

2 2 2

3

Man 3 then proposes to women 3, and she accepts.

Number Men Women

1 1 1

2 2 2

3 3 3

Graph Algorithms

Representing a Graph
Take this graph:

1 2

4 3

This is usually done in one of two ways:

Adjacency (bit) Matrix

(
((
((
((

0
0
0
1

1
0
0
0

1
1
0
0

0
0
1
0)
))
))
))

Left to top.

So, for example, if we have a path from the 6th node to the 3rd node, also denoted (6, 3).

If the graph is undirected, the matrix is symmetric.

The size of the matrix is Θ(𝑛2). Specifically, you can store it in 𝑛2 bits (bits are small).

Adjacency list

[[2, 3], [3], [4], [1, 4]]

You may have a hell of pointers as well to connect stuff together to easily delete edges.

It takes Θ(𝑚 + 𝑛) space.

If you’d like to be silly, it takes Θ((𝑚 + 𝑛) lg 𝑛) space because of the number of bits.

List all edges

Adjacency list
Θ(𝑚 + 𝑛) time.

4

Adjacency matrix
Θ(𝑛2) time.

You have to go to every place.

Something to note is that both of these algorithms run in linear time because they are linear
with respect to the input size.

This also means that if you have a matrix multiplication algorithm that takes Θ(𝑛3) time, it takes
Θ(𝑁 3

2) time because the size is 𝑁 = 𝑛2.

Depth-First Search
You start at some point and select an arbitrary edge to walk to, dropping breadcrumbs as you
go. When you get stuck, return to where you were when you weren’t stuck and choose another
path until you get to your destination.

You can also add discovery and finish times. Have one counter, and when you number a vertex,
you increment the counter. You start at a vertex labeled with discovery 1 and then go to another
vertex. Number the vertex’s discovery time, and then walk on to another edge. If you explore
every edge from a vertex, number the vertex’s finish time and back up. For example:

2

1 3(1,)

2

1 3

(2,)

(1,)

2

1 3 .

(2,)

(1,) (3,)

2

1 3 .

(2,)

(1,) (3, 4)

2

1 3 .

(2, 5)

(1,) (3, 4)

2

1 3 .

(2, 5)

(1, 6) (3, 4)

5

Code of depth-first search
for x in vertices(graph):
 x.color = White

t = 0
for x in vertices(graph):
 if x.color == White:
 depth_first_search(x)

def depth_first_search(x: Node):
 x.color = Gray
 t += 1
 x.discovery_number = t
 for y in adjacent(x):
 if y.color == White:
 depth_first_search(y)
 x.color = Black
 t += 1
 x.finish_time = t

This is the generic code for DFS and abstracts finding the vertices and the adjacent nodes.

Adjacency matrix vs adjacency lists
for x in vertices(vertices):

For an adjacency list or matrix, this part is the same:

for x in range(0, n):

But this:

for y in adjacent(x):

Becomes this for the adjacency matrix A:

for y in range(0, n):
 if A[x, y] != 0:

6

This then leads to Θ(𝑛2) complexity because, for every node, you’re looping through every other
vertex.

For the adjacency list, this becomes:

for y in adjacency_list[x]:

Which then takes a more complicated amount of time to process.

For this, each node will take the number of edges time. In sum, this will go over each edge
twice, leading to Θ(𝑛 + 𝑚) time, where 𝑛 is the number of nodes, and 𝑚 is the number of edges.

Both of these take linear time with respect to the size of the input.

Connected components
A graph is connected if there is a path between every pair of vertices.

A connected subgraph of a graph is a subgraph of a graph if it is connected.

A connected component is a maximally connected subgraph. You cannot add any more vertices
or edges to increase the size while still remaining connected.

Maximum connected subgraph: is as “large” as possible.

Find connected components
for x in vertices(graph):
 x.visited = False

num = 0

for x in vertices(graph):
 if not x.visited:
 num += 1
 depth_first_search(x)

def depth_first_search(x: Node):
 x.visited = True
 x.component = num

 for y in adjacent(x):
 if not y.visited:
 depth_first_search(x)

Note that the dot accesses on the nodes could be replaced with external arrays of size 𝑛.

This algorithm takes the same time as the generic depth-first search.

Biconnected
A graph is biconnected if the removal of any one vertex (and its edges) leaves the graph
connected.

Articulation point
An articulation point is a vertex whose removal disconnects the graph.

This may be good to avoid if you want redundancy.

The articulation points separate the biconnected components.

7

Biconnected components
Biconnected components are maximal biconnected subgraphs

Find the tree edges and back edges
for x in vertices(graph):
 x.color = White

back_edges = []
tree_edges = []

for x in vertices(graph):
 if not x.visited:
 depth_first_search(x)

def depth_first_search(x: Node, parent: Node | None = None):
 x.color = Gray

 for y in adjacent(x):
 if y.color == White:
 tree_edges.append((x, y))
 depth_first_search(y, x)
 elif y.color == Gray and y != parent:
 back_edges.append((x, y))

 x.color = Black

8

Example Outcome

Find the biconnected components
1. Find the back edges and tree edges. If there is no back edge pointing to before a point (by

the depth of the tree edges) for all child edges, then that point is an articulation point.

2. You only care if your subgraph goes above you, so you can just return the minimum discovery
number you discover through back-edges.

Pseudocode
My code:

for x in vertices(graph):
 x.discovery_number = None
 x.color = White

articulation_points = []
num = 0

for x in vertices(graph):
 if x.color == White:
 dfs(x)

def dfs(x: Node, parent: Node | None = None) -> int:
 x.color = Gray
 num += 1
 x.discovery_number = num
 minimum = x.discovery_number

 for y in adjacent(x):
 if y.color == White:
 # tree edge
 minimum = min(minimum, dfs(y, x))
 elif y.color == Gray and y != parent:
 # back edge

9

 minimum = min(minimum, y.discovery_number)

 if minimum < x.discovery_number:
 articulation_points.append(x)

 x.color = Black
 return minimum

Kruskal’s Code:

t = 0
stack = []
connected_components = []

for x in vertices(graph):
 x.discovery_number = 0

for x in vertices(graph):
 if x.discovery_number == 0:
 bicon(x, None)

def bicon(x: Node, parent: Node | None):
 t += 1
 x.discovery_number = t
 x.low_point = t
 for y in adjacent(x):
 if y.discovery_number == 0: # tree edge
 index = len(stack)
 stack.append((x, y))
 bicon(y, x)
 x.low_point = min(x.low_point, y.low_point)
 if y.low_point >= x.discovery_number:
 # x is either an articulation point relative to y
 # or x is the root of the tree.
 # Form a new connected component of all edges on
 # the `stack` up to and including (x, y). Remove these
 # edges from the stack.

 # this can be done in O(1) time with a linked list, but I'm lazy
 connected_components.append(stack[index:])
 while len(stack) != index:
 stack.pop()
 elif y.discovery_number < x.discovery_number and y != parent: # back edge
 stack.append((x, y))
 x.low_point = min(x.low_point, y.discovery_number)

To form the connected components, the idea is that you find the articluation point, and when
you return to it again, you found everything it’s connected to and so what you found was all of
what is in the connected component.

Alternate Algorithm
This uses depth.

t = 0
stack = []
connected_components = []

10

for x in vertices(graph):
 x.depth = 0

for x in vertices(graph):
 if x.depth == 0:
 bicon(x, 0)

def bicon(x: Node, depth: int):
 x.depth = depth + 1
 x.low_point = depth + 1
 for y in adjacent(x):
 if y.depth == 0:
 stack.append((x, y))
 bicon(x, d + 1),
 x.low_point = min(x.low_point, y.low_point)
 if y.low_point >= x.depth:
 # this can be done in O(1) time with a linked list, but I'm lazy
 connected_components.append(stack[index:])
 while len(stack) != index:
 stack.pop()
 elif y.depth < x.depth:
 stack.append((x,y))
 x.low_point = min(x.low_point, y.low_point)

Directed Graphs

DFS

After running DFS, you can divide the remaining edges into forward or cross edges by the
discovery and finish numbers.

11

Let 𝑑1, 𝑓1, 𝑑2, 𝑓2 be the discovery and finish numbers of two nodes that are connected by a
remaining edge.

If (𝑑1, 𝑓1) ⊂ (𝑑2, 𝑓2), then the edge from 1 → 2 is a forward edge.

Directed Acyclic Graph
A graph that has no cycles and is directed.

Getting Ready in the Morning Example

Iterate through all the edges, and add one to the node that they point to.

Take all the nodes with 0 edges. This is the set of nodes that you can immediately go to.

Then pull off an arbitrary node in the zero set and add that to a list of tasks.

For each of that node’s edges, subtract one from the count on the node. If this causes something
to become a zero, add it to the zero set.

When the zero set is empty, you’re done, and you’ve constructed a valid topological sorting in
the list of tasks.

The zero set can be implemented as an array or anything with 𝑂(1) removal and 𝑂(1) addition.
Additionally, you know the maximum possible size (𝑛) ahead of time.

The zero set could alternatively be constructed in sorted order (with a BTree, perhaps?), allowing
one to retrieve a topological sorting additionally sorted by another comparator.

Alternative
You could do this with a depth-first search instead.

Whenever you leave a node, add it to the start of the list. All this requires is a visited array.

The list requires 𝑂(1) prepending or 𝑂(1) appending and 𝑂(𝑛) reversal.

Note that you know the full size ahead of time.

12

Alternatively, just reverse the edges first, and the order works out. With an adjacency matrix,
this is just switching the meaning of the indices. (Kruskal doesn’t think there’s something nice
with an adjacency list to reverse the edges).

Strongly Connected Graph
If every vertex is reachable from every other vertex, then a graph is strongly connected.

Strongly Connected Component
A maximal subgraph of a graph that is strongly connected.

Finding them
Note that if you do a depth-first search, strongly connected components are only within each
subtree.

Reverse the edges of the graph, then do a depth-first search in reverse order of finish numbers.
When you return from a depth-first search, remove all the nodes you found. They form a strongly
connected component.

13

Breath-First Search
Create a queue. Add a node to the queue.

Repeatedly take a node off the queue and add all nodes attached to that node to the queue.
When the queue is empty, you’re done.

Order Notation
Proofs are:
1. Boring
2. Unhelpful

Justifying is not generally helpful, particularly if you already have a function.

How relations relate to order notation:

Relations Order Notation Vibes Latex

= Θ Grows at the same rate \Theta

≤ 𝑂 Grows at most as fast O

≥ Ω Grows at least as fast \Omega

< 𝑜 Grow faster than o

> 𝜔 Grow slower than \omega

To remember things, Θ has an equal sign in it and Ω points up.

Examples
• 2𝑛2 + 7 = Θ(𝑛2)

If you wrote something like Θ(2𝑛2 + 7), that is unhelpful (albeit true), so you will get points
off for it.

• 2𝑛2 + 𝑛 lg 𝑛 = 𝑂(𝑛3)

• 2𝑛2 + 4𝑛 + 3 = 2𝑛2 + 𝑂(𝑛)

= 2𝑛2 + 𝑜(𝑛2)

∼ 2𝑛2

14

∼ is used for approximately equal to.

Limit Definitions

𝑓(𝑛) = 𝑜(𝑔(𝑛)) ↔ lim
ℎ→∞

𝑓(𝑛)
𝑔(𝑛)

= 0

𝑓(𝑛) = 𝜔(𝑔(𝑛)) ↔ lim
ℎ→∞

𝑓(𝑛)
𝑔(𝑛)

= ∞

Note that there should probably be some sup’s thrown around here, but that’s almost never a
real issue.

Greedy Algorithms

Minimum Spanning Tree
You’re given an undirected graph with weights on the edges, and you aim to minimize the total
weight of the tree.

Theorem: Adding Minimum Edges Keeps minimum spanning tree
Assume we have a partial minimum spanning tree with subtrees separated by a boundary. Then
the cheapest edge crossing the boundary is in a partial minimum spanning tree compatible
with the previous one.

Proof
The general idea is that there is a certifier that can tell if an edge is in the minimum spanning
tree.

Then, at some time, it says a minimal edge can’t be part of the algorithm and constructs the
rest of the tree to prove it.

Given the rest of the tree, since it’s a spanning tree, it must have constructed edges crossing
the boundary to reach all vertices.

Add the minimal edge the certifier didn’t approve onto the tree. Since this tree was already
spanning, adding this edge creates a cycle. You can then remove any edge across the boundary
that the certifier chose in its optimal construction to form a spanning tree again. But because
that edge was, at worst, the same cost, it was totally fine to add our minimal edge instead, and
the certifier was wrong.

Kruskal’s Algorithm
First, sort the edges by weight. Let this be in the list 𝐴. Go through the edges. If adding the
edge to the tree wouldn’t create a cycle, add it.

1. Sort edges:

Proof
Construct the boundary such that the minimum edge would be through the boundary.

15

Algorithm
Sort edges such that 𝑒1 ≤ 𝑒2 ≤ 𝑒3 ≤ ⋯ ≤ 𝑒𝑚.

Sorting will take Θ(𝑚 log 𝑚) = Θ(𝑚 log 𝑛) time (since 𝑛 ≤ 𝑚 ≤ 𝑛2).

For 𝑖 from 1 to 𝑚, put edge 𝑒𝑖 onto the tree if it does not create a cycle.

But how do you find these cycles?

By using the union-find problem.

If you’re adding another edge, that edge should connect two different trees together. If it
connected to the same tree, that would be a cycle.

(Something to note is that these trees can start from any vertex, and they will still be a tree)

Trees of size 𝑠 will have height at most log 𝑠, when you balance the trees. (try to prove this with
induction)

Prim’s Algorithm
Start with any vertex. Put in the closest (least weight) vertex in the tree.

Proof
Construct the boundary such that the MST built so far is within the boundary, with no other
nodes.

16

Interval Scheduling
Given some intervals, 𝐼𝑖 = [𝑎𝑖, 𝑏𝑖], find the intervals that are nonoverlapping that maximizes=
the number of tasks you can do.

Theorem
Scheduling by the earliest finish time gives the optimal solution.

Proof

Minimize Lateness
Minimize your maximal lateness.

Given tasks that are required to be done by 𝑑𝑖 and take 𝑡𝑖 time, find the arrangments such that
max({𝑓𝑖 − 𝑡𝑖}) is as small as possible.

Algorithm
Sort by deadline.

𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛

Then, work on each task, one at a time, 1 to 𝑛.

Basically, do the thing that’s due next.

Theorem
Sorting by deadline finds the optimal solution.

Proof
Let a certifier reject some choice 𝑘, 𝑑1 ≤ 𝑑2 ≤ 𝑑𝑘, which would then result in 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤
𝑑𝑘 ≤ ⋯ ≤ 𝑑𝑛.

They instead choose something of the form 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑘−1 ≤ ⋯ ≤ 𝑑𝑘 ≤ ⋯ ≤ 𝑑𝑏.

17

In doing so, the increased the lateness of 𝑑𝑘 by 𝑡𝑎 + 𝑡𝑎+1 + ⋯ + 𝑡𝑘−1. This was not an improve-
ment since the time must have increased because the deadlines are further in the future.

Caching
Keep stuff you access often in a cache, and then you can do things faster.

The optimal solution for this is to discard information that is needed farthest in the future. This
is called Bélády’s algorithm.

It relies on temporal locality, where you use things in the future “soon.”

Spatial locality would rely on data that is close together being used together.

Least Recently Used (LRU) cache
Evict what was the least recently used. Generally a good heuristic. It is what is usually used, or
an approximation of it.

Huffman Encoding

Prefix Code
Guarantee that every character has a unique path on a binary tree, and you have a prefix code.

Let-
ter

Frequency Basic Encoding Prefix Code Huffman

a 0.32 000 11 00

b 0.25 001 10 01

c 0.20 010 001 10

d 0.18 011 01 110

e 0.05 100 000 111

18

Furthermore, the expected length of a letter is

𝐸[𝑋] = ∑
𝑐∈ chars

𝑝(𝑐) len(𝑐)

where 𝑝 is the probability of getting the letter.

For our prefix code, this results in 0.32 × 2 + 0.25 × 2 + 0.20 × 3 + 0.18 × 2 + 0.05 × 3 = 2.25.

The real thing
The idea of Huffman encoding is to build up a binary tree.

19

For the Huffman code, this turns out to be 0.32 × 2 + 0.25 × 2 + 0.20 × 2 + 0.18 × 3 + 0.05 ×
3 = 2.23, which is barely better.

Divide and Conquer

Merge Sort
In lecture online.

Other Examples
• Merge sort
• Maximum contiguous sum (bad solution)
• Quick sort
• Karatsuba

In general, you do something to create subproblems, then solve the subproblems, and then do
something to the data you get.

Counting Inversions
𝐴 = [50, 20, 10, 30, 60, 40]

The inversions are numbers that are out of place relative to other numbers.

20

There are 6 inversions in this list.

The number of inversions is the same as the number of exchanges that bubble sort would do.

The worst case occurs when the list is reversed, resulting in (𝑛
2) inversions.

Then the average case is 1
2(𝑛

2) inversions.

To count inversions efficiently, perform merge sort. While merging, compare how far you invert.

For example, if you were merging 𝑏𝑑 and 𝑐ℎ, when you moved the 𝑐 down, it was inverted with
the 𝑑.

Closest Pair
You are given 𝑛 points with distances between them. Find the closest distance.

Bruteforce algorithm:

m = 0
for i in range(n):
 for j in range(i + 1, n):
 m = min(m, dist(i, j))

21

What about on a line?
1. Sort points.
2. Find the closest pair next to each other.

This is then a 𝑛 log 𝑛 algorithm, bounded by sorting.

m = 0
sort points
for i in range(n-1):
 m = min(m, dist(i, i + 1))

Divide and Conquer a Line
High-level:
1. partition on the median such that half is on the left and half is on the right
2. Find the closest pair on the left and on the right side (recursive)
3. check the rightmost left point and the leftmost right point, and check their distance

Then 𝑇 (𝑛) = Θ(𝑛) + 2𝑇(𝑛
2) + Θ(1) = 2𝑇(𝑛

2) + Θ(𝑛), which implies Θ(𝑛 log 𝑛).

Alternatively:

1. Sort points
2. Recurse on the left and right. And then find the endpoints, and compare them.

On a plane!
Similarly to the divide and conquer solution, cut the solution space in half.

We will decide to split on a line 𝑥 = 𝑥0.

First, sort by 𝑥 values and by 𝑦 values (separately).

Choose the middle value, and split it such that half is to the left and half is to the right. You can
split by the 𝑥0, and this will then give you two sorted sublists (you may want to pass these down).

You can split the 𝑦 into sublists by splitting them in two by comparing the 𝑥 value of a point to
𝑥0.

Solve the problem on the left, resulting in 𝛿1 and solve the problem on the right, resulting in 𝛿2.

Let 𝛿 = min(𝛿1, 𝛿2).

Going down the y values on one half within the delta, compare to the next and previous 2 y-
values on the other side.

Then, this is:

Before recursing, you do Θ(𝑛 lg 𝑛) work to sort.

𝑇 (𝑛) = 2𝑇(𝑛
2
) + Θ(𝑛) ⇒ 𝑇(𝑛) = Θ(𝑛 lg 𝑛)

And therefore, the total time is Θ(𝑛 lg 𝑛)

Strassen’s algorithm
For multiplying matrices more quickly than Θ(𝑛3).

Let there be two 2 × 2 matrices 𝐴 and 𝐵.

22

𝐴 = (𝑎11
𝑎21

𝑎12
𝑎22

) 𝐵 = (𝑏11
𝑏21

𝑏12
𝑏22

)

(𝑎11
𝑎21

𝑎12
𝑎22

) × (𝑏11
𝑏21

𝑏12
𝑏22

) = (𝑐11
𝑐21

𝑐12
𝑐22

)

Traditionally this is:

𝑐11 = 𝑎11𝑏11 + 𝑎12𝑏21

𝑐12 = 𝑎11𝑏12 + 𝑎12𝑏22

𝑐21 = 𝑎21𝑏11 + 𝑎22𝑏21

𝑐22 = 𝑎21𝑏12 + 𝑎22𝑏22

For a general matrix, this can be 𝑐𝑖𝑗 = ∑𝑛
𝑘=1 𝑎𝑖𝑘𝑏𝑘𝑗, where 𝑛 is the dimension of the matrix.

In general, if 𝐴 and 𝐵 are 𝑛 × 𝑛 matrices, where 𝑛 = 2𝑘, 𝑘 ∈ ℤ+, we can multiply 𝐴 and 𝐵 by
partitioning 𝐴 and 𝐵 into 4 submatrices each of size (𝑛

2) × (𝑛
2). Interestingly, the above rule for

multiplying 2 × 2 matrices still works where 𝐴𝑖𝑗𝐵𝑗𝑘 means doing matrix multiplication on two
(𝑛

2) × (𝑛
2) matrices. This is called block matrix multiplication.

This can be converted into a recursive (divide and conquer) algorithm for matrix multiplication.
Since the algorithm performs 8 recursive multiplications and 4 matrix additions on matrices of
size (𝑛

2) × (𝑛
2), the running time is derived from the recurrence:

𝑇 (𝑛) = 8𝑇(𝑛
2
) + 4(𝑛

2
)

2
𝛼

Assuming 𝑇 (1) = 𝜇, 𝑇 (𝑛) = 𝑛2(𝑛 − 1)𝛼 + 𝑛3𝜇 = Θ(𝑛3).

This is the same as just doing it normally, so it doesn’t really help.

But there is a clever way to it instead with 7 multiplies and 18 adds.

This results in

𝑇 (𝑛) = 7𝑇(𝑛
2
) + 18(𝑛

2
)

2
𝛼, 𝑇 (1) = 𝜇

𝑇 (𝑛) = 𝜇𝑛lg 7 + 6𝛼(𝑛lg(7) − 𝑛2𝛼)

For multplications this becomes 𝑇 (𝑛) = 𝑛lg 7 ≈ 𝑛2.80735

Carry look ahead addition
If you have two 0s added, you know there will not be a carry. If you know that there are two 1s
added, you know there will be a carry.

You can use this to do work ahead of time.

Log Transform
If you have a lot of multiplies, you can take the logarithm since it converts multiples to additions.

23

Fast Fourier Transform
𝐴(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛−1𝑥𝑛−1

𝐵(𝑥) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛−1𝑥𝑛−1

𝐶(𝑥) = 𝐴(𝑥)𝐵(𝑥)

= 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐2𝑛−2𝑥2𝑛−2

Then, evaluate 𝐴, 𝐵 at 2𝑛 values.

𝑥1, 𝑥2, …, 𝑥2𝑛

⇒ 𝐴(𝑥1), 𝐴(𝑥2), …, 𝐴(𝑥2𝑛)
⇒ 𝐵(𝑥1), 𝐵(𝑥2), …, 𝐵(𝑥2𝑛)

Using those values, compute 𝐶 at 2𝑛 values:

𝐶(𝑥1) = 𝐴(𝑥1)𝐵(𝑥1)
𝐶(𝑥2) = 𝐴(𝑥2)𝐵(𝑥2)

⋮
𝐶(𝑥2𝑛) = 𝐴(𝑥2𝑛)𝐵(𝑥2𝑛)

You can then reconstruct 𝐶(𝑥) using those values.

𝐴even(𝑥) = 𝑎0 + 𝑎2𝑥 + 𝑎4𝑥2 + … + 𝑎𝑛−2𝑥
𝑛−2

2

𝐴odd(𝑥) = 𝑎1 + 𝑎3𝑥 + 𝑎5𝑥2 + … + 𝑎𝑛−1𝑥
𝑛−2

2

Then notice:

𝐴(𝑥) = 𝐴even(𝑥2) + 𝑥𝐴odd(𝑥2)

Using this, we can evaluate polynomials via divide and conquer:

def evaluate(A, x):
 if A.degree == 0:
 return A[0]
 x_squared = x**2
 a_even = evaluate(A.even, x_squared)
 a_odd = evaluate(A.odd, x_squared)
 return a_even + x * a_even

On its own, this takes 𝑇 (𝑛) = 2𝑇(𝑛
2) + 2 time, and 𝑇 (1) = 0, counting multiplies.

Then, 𝑇 (𝑛) = 2(𝑛 − 1) = Θ(𝑛), which is the same complexity as the normal way to evaluate
polynomials.

This then makes the 2𝑛 evaluations take Θ(𝑛2) time.

Finding the 𝑐0, …, 𝑐2𝑛 values takes Θ(𝑛) time.

But we can select our roots better!

𝜔𝑗,𝑘 = 𝑒𝜏𝑖𝑗/𝑘

24

Evaluate 𝐴(𝑥) at the 2𝑛 roots of unity.

Assume 𝑛 is a power of two.

𝐴(𝜔𝑗,2𝑛) = 𝐴even(𝜔2
𝑗,2𝑛) + 𝜔𝑗,2𝑛𝐴odd(𝜔2

𝑗,2𝑛)

= 𝐴even(𝜔𝑗,𝑛) + 𝜔𝑗,2𝑛𝐴odd(𝜔𝑗,𝑛)

Done with the example 𝐴(𝑥) = 1 + 4𝑥 − 3𝑥2 + 2𝑥3, and do one split:

𝑥 𝐴(𝑥) 𝑥2 𝐴even(𝑥2) 𝐴odd(𝑥2) 𝑥𝐴odd(𝑥2) 𝐴even(𝑥2) + 𝑥𝐴odd(𝑥2)
1 4 1 −2 6 6 4

−1 −8 1 −2 6 −6 −8
𝑖 4 + 2𝑖 −1 4 2 2𝑖 4 + 2𝑖

−𝑖 4 − 2𝑖 −1 4 2 −2𝑖 4 − 2𝑖

See that there is only 1 and −1. This is very convenient; we have reduced the solution space.

25

To produce the values for all the roots of unity, this will take:

𝑇 (𝑛) = 2𝑇(𝑛
2
) + Θ(𝑛) ⟹ 𝑇(𝑛) = Θ(𝑛 lg 𝑛)

Which is a very nice improvement on the previous Θ(𝑛2).

We want

𝐶(𝑥) = ∑
2𝑛−1

𝑠=0
𝑐𝑠𝑥𝑠

But define

𝐷(𝑥) = ∑
2𝑛−1

𝑠=0
𝑑𝑠𝑥𝑠

Where 𝑑𝑠 = 𝐶(𝜔𝑠,2𝑛), which we know from evaluating before.

Then:

𝐷(𝜔𝑗,2𝑛) = ∑
2𝑛−1

𝑠=0
𝑑𝑠(𝜔𝑗,2𝑛)𝑠

= ∑
2𝑛−1

𝑠=0
𝐶(𝜔𝑠,2𝑛)(𝜔𝑗,2𝑛)𝑠

= ∑
2𝑛−1

𝑠=0
[∑

2𝑛−1

𝑡=0
(𝑐𝑡 ⋅ (𝜔𝑠,2𝑛)𝑡)](𝜔𝑗,2𝑛)𝑠

= ∑
2𝑛−1

𝑡=0
∑
2𝑛−1

𝑠=0
𝑐𝑡 ⋅ (𝜔𝑠,2𝑛)𝑡(𝜔𝑗,2𝑛)𝑠

= ∑
2𝑛−1

𝑡=0
𝑐𝑡 ∑

2𝑛−1

𝑠=0
(𝑒𝜏𝑖𝑠/(2𝑛))𝑡(𝑒𝜏𝑖𝑗/(2𝑛))𝑠

= ∑
2𝑛−1

𝑡=0
𝑐𝑡 ∑

2𝑛−1

𝑠=0
𝑒𝜏𝑖𝑡𝑠/(2𝑛)𝑒𝜏𝑖𝑠𝑗/(2𝑛)

= ∑
2𝑛−1

𝑡=0
𝑐𝑡 ∑

2𝑛−1

𝑠=0
𝑒𝜏𝑖𝑡𝑠/(2𝑛)+𝜏𝑖𝑠𝑗/(2𝑛)

= ∑
2𝑛−1

𝑡=0
𝑐𝑡 ∑

2𝑛−1

𝑠=0
𝑒𝜏𝑖𝑠(𝑡+𝑗)/(2𝑛)

= ∑
2𝑛−1

𝑡=0
𝑐𝑡 ∑

2𝑛−1

𝑠=0
(𝜔𝑡+𝑗,2𝑛)𝑠

Let 𝜔𝑘,2𝑛 ≠ 1, and 𝑘 = 𝑡 + 𝑗:

∑
2𝑛−1

𝑠=0
(𝜔𝑘,2𝑛)𝑠 =

1 − (𝜔𝑘,2𝑛)2𝑛−1+1

1 − 𝜔𝑘,2𝑛
=

1 − (𝜔𝑘,2𝑛)2𝑛

1 − 𝜔𝑘,2𝑛
=

1 − (𝑒𝜏𝑖𝑘/(2𝑛))2𝑛

1 − 𝜔𝑘,2𝑛
= 1 − 1

1 − 𝜔𝑘,2𝑛
= 0

1 − 𝜔𝑘,2𝑛
= 0

However, when 𝜔𝑘,2𝑛 = 1,

26

∑
2𝑛−1

𝑠=0
1 = 2𝑛

Let 𝑡 + 𝑗 = 2𝑛 since everything else becomes zero. Then 𝑡 = 2𝑛 − 𝑗:

𝐷(𝜔𝑗,2𝑛) = 𝑐2𝑛−𝑗 ∑
2𝑛−1

𝑠=0
(𝜔2𝑛,2𝑛)𝑠

= 𝑐2𝑛−𝑗2𝑛
= 2𝑛𝑐2𝑛−𝑗

And therefore, 𝐷(𝜔𝑘,2𝑛) = 2𝑛𝑐2𝑛−𝑗, and finally

𝑐2𝑛−𝑗 =
𝐷(𝜔𝑗,2𝑛)

2𝑛

Using this property, you can find 𝑐𝑚 by varying 𝑗.

You can evaluate 𝐷(𝜔𝑗, 2𝑛) for all 𝑗 in Θ(𝑛 lg 𝑛) time. Dividing takes Θ(1) time for each, and so
takes Θ(𝑛) for all values of 𝑗. In sum, this takes Θ(𝑛 lg 𝑛) time.

Adding this on to the other program to evaluate the 𝐶(𝜔)’s, this takes in total Θ(𝑛 lg 𝑛) time to
generate the polynomial 𝐶(𝑥).

Dynamic Programming

Fibonacci
Fibonacci, to find the nth number, using variables:

F_n_minus_1 = 1
F_n = 1

for i in range(3, n + 1):
 F_n_minus_2 = F_n_minus_1
 F_n_minus_1 = F_n
 F_n = F_n_minus_1 + F_n_minus_2
print(F_n)

You can also just use arrays:

F = [None] * n
F[0] = 1
F[1] = 1
for i in range(2, n + 1):
 F[i] = F[i-1] + F[i - 2]
print(F[n])

Or do it recursively:

def f(n):
 if n == 1 or n == 2:
 return 1

 return f(n - 1) + f(n - 2)

Comically terrible complexity, but oh well. It takes Θ(𝜑𝑛) time, where 𝜑 is the golden ratio (due
to the asymptotic complexity of the Fibonacci sequence)

27

If you memoize the results, it works fine.

Richard Bellman called this dynamic programming because “it’s impossible to use the word
dynamic in a pejorative sense” and he wanted to shield his work from Charles Wilson, who he
knew didn’t like math.

fib = [None] * (n + 1)

def f(n):
 nonlocal fib
 if fib[n] != None:
 return fib[n]

 if n == 1 or n == 2:
 return 1

 fib[n] = f(n - 1) + f(n - 2)
 return fib[n]

Alternatively, in python:

from functools import cache

@cache
def f(n):
 if n == 1 or n == 2:
 return 1
 return f(n - 1) + f(n - 2)

But to optimize this, you can do it in a for loop instead:

fib = [None] * (n+1)

fib[1] = 1
fib[2] = 1

for i in range(3, n + 1):
 fib[i] = fib[i - 1] + fib[i - 2]

Notice that we went back to the array method! In truth, the best method was just the first one
we did since it only requires Θ(1) memory. But, by doing this through dynamic programming,
this idea of remembering can be generalized to different problems!

Subset Sum
Given a list of integers

𝑤1, 𝑤2, …, 𝑤𝑛

and a target 𝑤, and we want to find a subset of the 𝑤𝑖 whose sum is as large as possible but
does not exceed 𝑤.

For example

[3, 5, 8, 11]
𝑤 = 20

8 + 11 = 19
3 + 5 + 11 = 19

28

How can we make a recurrence? Splitting up the problem is usually a good idea. Let 𝑆(𝑖) be
the maximum sum not exceeding 𝑠 that only uses elements 1, …, 𝑖 of the list.

𝑆(𝑖, 𝑠) = max(
𝑆(𝑖 − 1),
𝑆(𝑖 − 1, 𝑠 − 𝑤𝑖) + 𝑤𝑖

)

In this problem, we have a 2-dimensional table, with the values on one side and the things to
sum to on the other axis.

for s in range(0, w + 1):
 S[0, s] = 0

for i in range(0, n + 1):
 S[i, 0] = 0

for i in range(1, n + 1):
 for s in range(1, w + 1):
 if s - w[i] < 0:
 S[i, s] = S[i - 1, s]
 else:

29

 S[i, s] = max(
 S[i - 1, s],
 S[i - 1, s - w[i]] + w[i],
)

You can save memory by going backward with 𝑠, which eliminates the 𝑛𝑤 memory complexity
and takes 𝑤 memory instead.

This takes Θ(𝑛𝑤) time. Note that this is not polynomial time since 𝑤 is in bits, which makes
Θ(𝑛𝑤) = Θ(𝑛2lg 𝑤) and therefore, it’s exponential.

Knapsack Problem
Have weights 𝑤1, 𝑤2, …, 𝑤𝑛 with a max weight 𝑤 and values 𝑣1, 𝑣2, …, 𝑣𝑛. Maximize total value.

Let 𝑉 (𝑖, 𝑗) be the maximum sum of values that can be packed only using items 1, …, 𝑖 with total
weight less than or equal to 𝑗.

𝑉 (𝑖, 𝑗) = max(
𝑉 (𝑖 − 1, 𝑗),
𝑉 (𝑖 − 1, 𝑗 − 𝑤𝑖) + 𝑣𝑖

)
𝑉 (𝑖, 0) = 0
𝑉 (0, 𝑗) = 0

30

for i in range(0, n + 1):
 value[i, 0] = 0

for j in range(1, w + 1):
 value[0, j] = 0

for i in range(1, n + 1):
 for j in range(1, weight[i]):
 value[i, j] = value[i - 1, j]
 for j in range(weights[i] + 1, w + 1):
 value[i, j] = max(
 value[i - 1, j]
 value[i - 1, j - weights[i]] + values[i]
)

Chained Matrix Multiplication
Given matrices 𝐴1, 𝐴2, …, 𝐴𝑛, form the product 𝐴1𝐴2𝐴3⋯𝐴𝑛.

For a matrix multiplication

𝑐𝑖𝑗 = ∑
𝑛

𝑘=1
𝐴𝑖𝑘 ⋅ 𝐵𝑘𝑗

If you multiply two matrixes

𝐴 ∈ 𝑀(ℝ)𝑝×𝑞, 𝐵 ∈ 𝑀(ℝ)𝑞×𝑟, 𝐴𝐵 ∈ 𝑀(ℝ)𝑝×𝑟

Then, to do the multiplication the traditional way, it takes 𝑝 × 𝑞 × 𝑟 atomic multiplies.

Then, notice if you take

(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶)

they have different numbers of multiplications.

The real question here is given 𝑝0, 𝑝1, 𝑝2, …, 𝑝𝑛, representing 𝑝0 × 𝑝1, 𝑝1 × 𝑝2, …, 𝑝𝑛−1 × 𝑝𝑛 size
matrices, find the best place to put parentheses.

Take matrices: 𝐴1𝐴2⋯𝐴𝑛

Split them: (𝐴1𝐴2⋯𝐴𝑘)(𝐴𝑘+1𝐴𝑘+2⋯𝐴𝑛)

You have two subproblems!

Let 𝑀(𝑖, 𝑗) be the minimum cost to multiply matrices 𝐴𝑖, 𝐴𝑖+1, …, 𝐴𝑗.

𝑚(𝑖, 𝑗) = min{𝑚(𝑖, 𝑘) + 𝑚(𝑘 + 1, 𝑗) + 𝑝𝑖−1𝑝𝑘𝑝𝑗 | 𝑘 ∈ {𝑖, …, 𝑗 − 1}}

𝑚(𝑖, 𝑖) = 0

Notice that to evaluate a 𝑚(𝑖, 𝑗), you need the values at all 𝑚(𝑘, 𝑚) where 𝑘 < 𝑖 or 𝑗 < 𝑖 and 𝑘 ≤
𝑖 and 𝑗 ≤ 𝑖.

To evaluate this, we can evaluate diagonally.

31

for i in range(1, n + 1):
 m[i, i] = 0

for l in range(2, n + 1):
 for i in range(1, n - l + 1 + 1):
 j = i + l - 1
 M = float("inf")
 for k in range(i, j):
 M = min(M,
 m[i, k] + m[k + 1, j] + p[i - 1] * p[k] * p[j]
)

 m[i, j] = M

Segmented Least Squares
Given a plot, with random data:

32

Find a line that fits well through it:

But how can we know that this is the best line? We can’t, but we can make the goal to have the
sum of the squares as minimal as possible.

This results in this line, the one in orange:

The line in green is the previous plot.

The error that we seek to minimize is given by this formula

Error(𝐿, 𝑝) = ∑
𝑛

𝑖=1
(𝑖𝑖 − 𝑎𝑥𝑖 − 𝑏)2

33

𝑎 = 𝑛(∑ 𝑥𝑖𝑦𝑖) − (∑ 𝑥𝑖)(∑ 𝑦𝑖)
𝑛(∑ 𝑥2

𝑖) − (∑ 𝑥𝑖)
2

𝑏 = ∑ 𝑦𝑖 − 𝑎 ∑ 𝑥𝑖
𝑛

But, for segmented least squares, you can also make lines like this:

The cost is the same as the normal least squares fit, and an additional cost for each additional
line.

Let

𝑒(𝑖, 𝑗) = ∑
𝑗

𝑘=𝑖
(𝑖𝑘 − 𝑎𝑥𝑘 − 𝑏)2

OPT(𝑗) is the minimal cost of a segmented least squares fit for points 1, …, 𝑗.

OPT(𝑗) = min
1≤𝑖≤𝑗

(𝑐 + OPT(𝑖 − 1) + 𝑒(𝑖, 𝑗))

OPT(1) = 0

for i in range(1, n + 1):
 for j in range(1, n + 1):
 # compute least squares fit for points i to j.
 e[i, j] = magic()

for j in range(1, n + 1):
 m = float("inf")
 for i in range(1, j + 1):
 m = min(
 m,
 e[i, j] + c + M[i - 1]
)
 M[j] = m

Shortest path
Weight matrix: 𝑊[𝑖, 𝑗]. Assume 𝑊[𝑖, 𝑖] = 0.

34

𝐷𝑘[𝑖, 𝑗] is the length of the shortest path from 𝑖 to 𝑗 that only uses internal vertices from the set
{1, 𝑘}.

You either use the 𝑘th vertex or you don’t:

𝐷𝑘[𝑖, 𝑗] = min(𝐷𝑘−1[𝑖, 𝑗],

𝐷𝑘−1[𝑖, 𝑘] + 𝐷𝑘−1[𝑘, 𝑗])

For the base case, if you have no in-between nodes, you have no choice but to use the weight
between the nodes.

𝐷0[𝑖, 𝑗] = 𝑊[𝑖, 𝑗]

for i in range(1, n + 1):
 for j in range(1, n + 1):
 D[0, i, j] = W[i, j]

for k in range(1, n + 1):
 for i in range(1, n + 1):
 for j in range(1, n + 1):
 D[k, i, j] = min(
 D[k - 1, i, j],
 D[k - 1, i, k] + D[k - 1, k, j]
)

This takes Θ(𝑛3) time by the second loop.

This currently takes Θ(𝑛3) space, but you can reduce it to Θ(𝑛2) by only keeping the 𝑘 − 1
matrix while producing the 𝑘 matrix.

Even better, you can just do:

for i in range(1, n + 1):
 for j in range(1, n + 1):
 D[i, j] = W[i, j]

35

for k in range(1, n + 1):
 for i in range(1, n + 1):
 for j in range(1, n + 1):
 D[i, j] = min(
 D[i, j],
 D[i, k] + D[k, j]
)

Transitive Closure
Given an adjacency matrix 𝐴[𝑖, 𝑗], form the transitive closure matrix 𝑇 [𝑖, 𝑗], which tells you if
there are paths from 𝑖 to 𝑗.

𝑇 𝑘[𝑖, 𝑗] is 1 if there is a path from 𝑖 to 𝑗 that only uses internal vertices from the set {1, …, 𝑘}.

𝑇 𝑘[𝑖, 𝑗] = 𝑇 𝑘−1[𝑖, 𝑗] ∨ (𝑇 𝑘−1[𝑖, 𝑘] ∧ 𝑇 𝑘−1[𝑘, 𝑗])

𝑇 0[𝑖, 𝑗] = 𝐴[𝑖, 𝑗]

Which then becomes:

for i in range(1, n + 1):
 for j in range(1, n + 1):
 T[0, i, j] = A[i, j]

for k in range(1, n + 1):
 for i in range(1, n + 1):
 for j in range(1, n + 1):
 T[k, i, j] =
 T[k - 1, i, j] or (T[k - 1, i, k] and T[k - 1, k, j])

But notice if T[k - 1, i, k] == 1, T[k, i, j] = T[k - 1, i, j] or T[k - 1, j]. Alternatively,
if T[k - 1, i, k] == 0, T[k, i, j] = T[k - 1, i, j].

36

And then:

for i in range(1, n + 1):
 for j in range(1, n + 1):
 T[0, i, j] = A[i, j]

for k in range(1, n + 1):
 for i in range(1, n + 1):
 if T[i, k]:
 for j in range(1, n + 1):
 T[i, j] = T[i, j] or T[k, j]

Random Note
You can use the fourier transform to multiply integers to do it much faster: 𝑂(𝑛 lg 𝑛 lg lg 𝑛).

This has since been improved to 𝑂(𝑛 lg 𝑛).

Segmented Alignment
ocurrance
occurrence

These strings differ. But how?

Define a gap penalty 𝛿 and a mismatch penalty 𝛼(𝑝, 𝑞). Note that 𝛼(𝑝, 𝑝) is 0.

Define opt(𝑖, 𝑗) as the cost of matching the first 𝑖 letters of the first word with the first 𝑗 letters
of the second word.

Then:

opt(𝑖, 𝑗) = min(

opt(𝑖 − 1, 𝑗 − 1) + 𝛼(𝑥𝑖, 𝑦𝑗),

opt(𝑖 − 1, 𝑗) + 𝛿,
opt(𝑖, 𝑗 − 1) + 𝛿

)

opt(0, 𝑖) = opt(𝑖, 0) = 𝑖𝛿

To create greater indexed values, we need every value that is indexed one lower.

A[0...m, 0...n]

for i in range(0, m + 1):
 A[i, 0] = delta * i
for j in range(1, n + 1):
 A[0, j] = delta * j

for i in range(1, m + 1):
 for j in range(1, n + 1):
 A[i, j] = min(
 A[i - 1, j - 1] + alpha(x[i], y[i]),
 A[i - 1, j] + delta,
 A[i, j - 1] + delta
)

37

NP-completeness
Problems in P can be solved in polynomial time. Problems in NP can be verified in polynomial
time.

3-SAT, SAT, and circuit SAT are in NP-complete.

The meaning of NP-complete means that if one of them can be solved in polynomial time,
everything in NP can be. If one of them cannot be solved in polynomial time, then 𝑃 ≠ NP.

Hamiltonian Cycle
A simple cycle that hits every vertex exactly once.

Theorem
Finding a Hamiltonian cycle is NP-complete.

Proof
1. Show it is in NP
2. Show it hard for NP

To do so, we will show 3-SAT ≤
𝑃

Hamiltonian Cycle

Where 𝑎 ≤
𝑃

𝑏 means that 𝑎 is polynomially reducible to 𝑏. (it will only take a polynomial amount

of time, assuming that you have 𝑏 as an oracle).

This is in NP because the verifier just checks if a produced Hamiltonian cycle is a Hamiltonian
cycle, which it can do by making sure each node is visited, and that you make no illegal moves
(attempting to go on nonexistent routes).

This takes 𝑂(𝑛2) time, which is polynomial.

To prove this is hard for NP, we will see if we can solve 3-SAT with it.

3-SAT has a bunch of clauses, 𝑐1, 𝑐2, 𝑐3, …, 𝑐𝑘 and a bunch of variables, 𝑥1, 𝑥2, …, 𝑥𝑛. Each clause
has 3 variables ored together, and each variable may or may not be negated.

Karp reduction can only produce one instance, and must have the same output. We will always
do Karp reductions in this class.

Let us take the example of a 3-SAT problem (𝑥1 ∨ ¬𝑥2 ∨ 𝑥3) ∧ (¬𝑥1 ∨ ¬𝑥2 ∨ 𝑥3) ∧ (¬𝑥1 ∨ 𝑥2 ∨
¬𝑥3)

Going left to right on a path across indicates true and going right to left on a path indicates false.

By adding clause nodes, since they are required to be passed through, you can require that at
least one direction required by a clause is chosen, since a Hamiltonian cycle must pass through
all vertices.

For example, if a clause is 𝑥1 ∨ ¬𝑥2 ∨ 𝑥3, this will require that 𝑥1 goes right, 𝑥2 goes left or 𝑥3
goes right. To enforce this, connect the first node of 𝑥1 to the clause node and then the clause
node to the second node of 𝑥1. Further, connect the second node of 𝑥2 to the clause node and
then the clause node to the first node of 𝑥2. Finally, connect the first node of 𝑥3 to the clause
node and then the clause node to the second node of 𝑥3.

This construction has 2 + 𝑘 + (𝑘 + 1)𝑛 vertices and 1 + 6𝑘 + 2𝑛𝑘 + 4𝑛 edges. These are both
polynomials, and therefore this is a Karp reduction.

For a Hamiltonian path, simply remove the pink edge on the right.

38

Traveling Salesman Problem
Find the optimal path for a salesman to go through a series of cities in a graph, visiting all
of them.

The decision problem version of this is to say whether or not there is a path that is at most
some length.

39

Proof
We will show Hamiltonian Cycle ≤

𝑃
Traveling Salesman

Given a Hamiltonian Cycle with 𝐺 = (𝑉 , 𝐸), where 𝑉 is the vertices and 𝐸 is the edges in the
graph 𝐺.

(𝑥, 𝑦) has weight 1 if (𝑥, 𝑦) ∈ 𝐸. Otherwise, (𝑥, 𝑦) has weight 2. Then, set your target to the
number of vertices in the graph 𝐺. Then the correct result will be output by the traveling
salesman decision problem.

This works because to go through all the vertices, it must take at least 𝑛 edges.

Perfect Marriage Problem
The 2 dimensional problem:
Every man and every women has a set of the opposite gender they are willing to marry. Is there
an arrangement such that everyone’s sets are satisfied?

The 3 dimensional problem:
There are 𝑛 men, women, and pets. There is a list of all the triples such that everyone is happy.
Is there an arrangement such that everyone is happy?

Proof
Prove that 3-dimensional matching is NP-complete.

It is in NP because if you have a correct arrangement, you can check it by going through the list
of triples and making sure that each is satisfied. Furthermore, make sure that the arrangement
given is actually an arrangement.

We will show that 3-SAT ≤
𝑃

3DM.

For 3-SAT we have variables 𝑣1, 𝑣2, …, 𝑣𝑛 and clauses 𝑐1, 𝑐2, …, 𝑐𝑘.

For 3-d matching we have sets 𝑋, 𝑌 , 𝑍 , and 𝑇 ⊂ 𝑋 × 𝑌 × 𝑍 , where 𝑇 is the set of triples.

You create 2𝑘 tips in total, for 2𝑘𝑛 in total. These tips are in the set 𝑍 .

For a clause gadget 𝑖, create two people in the 𝑋 and 𝑌 sets. For a clause 𝑣1 ∨ ¬𝑣2 ∨ 𝑣3, connect
to the 2𝑖th tip for 𝑣1, the 2𝑖 + 1th tip for 𝑣2 and the 2𝑖th tip for 𝑣3.

After adding clause gadgets, we have 𝑘(𝑛 − 1) uncovered tips. These still need to have families,
so we will add 𝑘(𝑛 − 1) additional gadgets, but this time we will connect to everything.

40

This construction will have 2𝑘𝑛 tips and therefore sets of size 2𝑘𝑛. Furthermore, it will have
𝑘(𝑛 − 1) × 2𝑘𝑛 connections for the garbage gadgets, 3𝑘 for the clause gadgets, and 2𝑘𝑛 for the
tips for the variables.

This is in sum 3𝑘 + 2𝑘𝑛 − 2𝑘2𝑛 + 2𝑘2𝑛2 = Θ(𝑘2𝑛2), which is polynomial size.

3-Coloring
Given a graph, see if it can be colored using only three colors.

Proof
It is in NP.

We will show 3-SAT ≤
𝑃

3-coloring.

41

This gadget is satisifed with coloring iff at least one of 𝑣1, 𝑣2 and 𝑣3 is the same color as true.

The main component is:

42

Then you just add a gadget for each clause in the 3-SAT problem.

Subvector Sum
Given a list of vectors 𝑣1, 𝑣2, …, 𝑣𝑛 and a target vector 𝑣, is there some subset of the vectors
that sum to 𝑣?

𝑉 =
{{
{
{{

(
((
(3

2
7)
))
),

(
((
(4

5
2)
))
),

(
((
(1

2
3)
))
)

}}
}
}}

𝑣 =
(
((
(4

8
10)

))
)

𝑣1 + 𝑣3 = 𝑣

Note that this is not linear alegbra. You cannot add multiples.

43

Theorem
Subvector sum is NP-complete.

We will show 3d matching ≤
𝑃

subvector sum.

𝑣𝑖 = (0, 0, 0, 0, 1, 0, 0, 0⏟⏟⏟⏟⏟⏟⏟
𝑛

, 0, 0, 0, 0, 0, 1, 0, 0⏟⏟⏟⏟⏟⏟⏟
𝑛

, 0, 1, 0, 0, 0, 0, 0, 0⏟⏟⏟⏟⏟⏟⏟
𝑛

)

This represents the triple 𝑡𝑖 = (5, 6, 2)

We target the vector (1, .., 1). This means that every individual must be represented once.

Subset Sum
Given a list of numbers 𝑎1, 𝑎2, …, 𝑎𝑛, and a target vector 𝑘, is there a subset of the numbers that
sum to 𝑘?

Theorem
This is NP complete if you use the same reduction as subvector-sum, but you interpret the
vectors as trinary numbers, subset sum can also solve that problem.

This is almost the same size problem.

k-Coloring
Given a graph, can you give it 𝑘 colors such that no colors touch via edges?

Theorem
For 𝑘 ≥ 3, show that 3-Coloring ≤

𝑃
k-Coloring. Given a 3-coloring, add 𝑘 − 3 vertices that each

connect to all other vertices (including each other).

Independent Set
In a graph, an independent set is a set of vertices with no edges between any pair in the set.

For example:

44

The optimization problem is to find the largest independent set.

The decision problem is given a graph, and a target 𝑘, does 𝐺 have an independent set of size
𝑘?

Theorem
Independent set is NP-complete.

1. It is in NP.
2. It is hard for NP.

To show that it is hard for NP, we will show

3-SAT ≤
𝑃

Independent Set

Given variables 𝑥1, 𝑥2, …, 𝑥𝑛, and clauses 𝑐1, 𝑐2, …, 𝑐𝑘, we will create a graph.

45

Vertex Cover
A vertex cover is a subset of vertices such that every edge is incident to at least one vertex
from the set.

Optimization version: given a graph, find a minimum number of vertexes to form a vertex
coveFindVertexCoverr.

Decision version: given a graph, see if you can form a vertex cover with ℓ vertices or less.

Theorem
1. It is in NP
2. It is hard for NP

To show that it is hard for NP, we will show Independent Set ≤
𝑃

Vertex Cover.

If you have an independent set of a graph, the nodes that are not in the independent set are in
the vertex cover. The reverse is also true.

So, if you just set ℓ = |𝑉 | − 𝑘, with the same graph, that is the independent set problem solved
using the vertex covering algorithm.

Algorithm
To find a vertex cover of size 𝑘, consider all subsets of vertices of size 𝑘. Check if it is a vertex
cover.

This will about be

(𝑛
𝑘

) ≈ 𝑂(𝑛𝑘)

Alternatively, if you take every edge, you can try each vertex connected to that edge.

This takes about 𝑇 (𝑘) = 2𝑇 (𝑘 − 1) + 𝑂(𝑛) time, so Θ(𝑛2𝑘) time.

46

𝑂(𝑛2𝑘) is “fixed parameter tractable”.

This means that it is 𝑂(𝑓(𝑘)𝑛ℓ)

There is another algorithm that takes Θ(𝑘𝑛 + 1.274𝑘) and another that takes Θ(𝑘22𝑘 + 𝑚 + 𝑛).

Planar Graph
A graph is planar if you can draw it so that no two edges cross.

Two examples of nonplanar graphs:

Figure 1: K5 Graph Figure 2: K3, 3 Graph

For coloring a planar graph, 2 coloring is easy, 3 coloring is NP-complete, but 4 coloring is
also easy.

Kuratowski’s Theorem
A graph is planar iff 𝐾5 or 𝐾3,3 are not embedded.

This may sound simple, but this also means that you have to check if there is path between
each of the 5 or 6 vertices.

This are called homomorphic graphs. For example, the following graphs are homomorphic:

47

48

	Stable Marriage Problem
	Example

	Graph Algorithms
	Representing a Graph
	Adjacency (bit) Matrix
	Adjacency list

	List all edges
	Adjacency list
	Adjacency matrix

	Depth-First Search
	Code of depth-first search
	Adjacency matrix vs adjacency lists

	Connected components
	Find connected components
	Biconnected
	Articulation point
	Biconnected components

	Find the tree edges and back edges
	Example Outcome

	Find the biconnected components
	Pseudocode
	Alternate Algorithm

	Directed Graphs
	DFS
	Directed Acyclic Graph
	Getting Ready in the Morning Example
	Alternative

	Strongly Connected Graph
	Strongly Connected Component
	Finding them

	Breath-First Search

	Order Notation
	Examples
	Limit Definitions

	Greedy Algorithms
	Minimum Spanning Tree
	Theorem: Adding Minimum Edges Keeps minimum spanning tree
	Proof

	Kruskal's Algorithm
	Proof
	Algorithm

	Prim's Algorithm
	Proof

	Interval Scheduling
	Theorem
	Proof

	Minimize Lateness
	Algorithm
	Theorem
	Proof

	Caching
	Least Recently Used (LRU) cache

	Huffman Encoding
	Prefix Code
	The real thing

	Divide and Conquer
	Merge Sort
	Other Examples
	Counting Inversions
	Closest Pair
	What about on a line?
	Divide and Conquer a Line

	On a plane!

	Strassen's algorithm
	Carry look ahead addition
	Log Transform
	Fast Fourier Transform

	Dynamic Programming
	Fibonacci
	Subset Sum
	Knapsack Problem
	Chained Matrix Multiplication
	Segmented Least Squares
	Shortest path
	Transitive Closure
	Random Note
	Segmented Alignment

	NP-completeness
	Hamiltonian Cycle
	Theorem
	Proof

	Traveling Salesman Problem
	Proof

	Perfect Marriage Problem
	Proof

	3-Coloring
	Proof

	Subvector Sum
	Theorem

	Subset Sum
	Theorem

	k-Coloring
	Theorem

	Independent Set
	Theorem
	Vertex Cover
	Theorem
	Algorithm

	Planar Graph
	Kuratowski's Theorem

