# MATH341 - 0201

## Ash

# ash@ash.lgbt

# **Contents**

| Chapter 1: Review and Preliminaries                                                       | 9  |
|-------------------------------------------------------------------------------------------|----|
| Complex Numbers                                                                           | 9  |
| Definition: Linear Dependence                                                             | 9  |
| Field properties of complex numbers                                                       | 9  |
| Properties of complex conjugate and norm                                                  | 9  |
| Example                                                                                   | 10 |
| Theorem                                                                                   | 10 |
| Theorem                                                                                   | 10 |
| Example                                                                                   | 10 |
| Vector Spaces, Subspaces, Bases                                                           | 10 |
| Examples of vector spaces                                                                 | 11 |
| Subspace Criterion                                                                        | 11 |
| Example: Find a basis for ${\mathbb C}$ once as a real and once as a complex vector space | 11 |
| Linear independence                                                                       | 11 |
| Spanning                                                                                  | 11 |
| Linear independence                                                                       | 11 |
| Spanning                                                                                  | 12 |
| Example: Span                                                                             | 12 |
| Linear Transformation and Matrices                                                        | 12 |
| Example 1.18                                                                              | 12 |
| Definition of tr, trace                                                                   | 12 |
| Flatness Theorem                                                                          | 13 |
| Example                                                                                   | 13 |
| Theorem                                                                                   | 13 |
| Proof                                                                                     | 13 |
| Isomorphism                                                                               | 14 |
| Example                                                                                   | 14 |
| Chapter 2: Diagonalization                                                                | 14 |
| Coordinate vector                                                                         | 14 |
| Example                                                                                   | 14 |
| Coordinate vectors are isomorphisms                                                       | 14 |
| Proof                                                                                     | 14 |
| Change of Coordinates Theorem                                                             | 15 |
| Proof                                                                                     | 15 |
| Uniqueness                                                                                | 15 |
| Example                                                                                   | 15 |
| Conversion Theorem                                                                        | 16 |
| Change of Coordinates Matrix                                                              | 16 |

| Inverse of Change of Coordinates Matrix                        |            |
|----------------------------------------------------------------|------------|
| Proof                                                          |            |
| Example                                                        |            |
| Example                                                        |            |
| Similarity                                                     |            |
| Similarity from Change of Coordinates                          | 17         |
| Eigenvectors and Diagonalization                               | 17         |
| Example                                                        | 17         |
| Eigenvalues, Eigenvectors and Eigenpairs                       | 17         |
| Eigenvalues from the characteristic polynomial theorem         | 17         |
| Characteristic Polynomial                                      | 17         |
| Example finding Eigenvalues                                    | 18         |
| Why diagonal matrices are nice                                 | 18         |
| Diagonalizable Matrix Definition                               | 18         |
| diag definition                                                | 18         |
| Find the Diagonalization of a Matrix                           | 18         |
| Proof                                                          | 18         |
| Example                                                        | 19         |
| Example                                                        | 20         |
| Similar Matrices and Characteristic Polynomial Theorem         |            |
| Proof                                                          |            |
| Distinct Eigenvalues lead to linearly independent Eigenvectors | 20         |
| Proof                                                          |            |
| Exponentiating Matrix                                          |            |
| Proof for Diagonalizable Matrices                              | 21         |
| Example                                                        |            |
| Fundamental Theorem of Algebra                                 |            |
| Upper and Lower Triangular                                     |            |
| apter 3: Jordan Form                                           |            |
| Block Multiplication of Matrices                               | 22         |
| Theorem: Schur's Theorem                                       |            |
| Proof                                                          |            |
| Example                                                        |            |
| Recall: Existence of Upper Triangular Matrix                   |            |
| Example:                                                       |            |
| Definition: matrix input into a polynomial                     |            |
| Cayley-Hamilton theorem matrix                                 |            |
| Proof                                                          |            |
| Jordan Canonical Form                                          |            |
| Example                                                        |            |
| Theorem: Steady state kernel space                             |            |
| Generalized Eigenvector                                        |            |
| Theorem: linearly independent generalized eigenvectors         |            |
| The dimension of the generalized eigenspace                    |            |
| Existence of Jordan Canonical Form                             |            |
|                                                                | <i>-</i> / |

| Example                                                              | 27 |
|----------------------------------------------------------------------|----|
| Motivation for exponentiating                                        | 28 |
| Example                                                              | 29 |
| Example                                                              | 29 |
| Theorem: Finding $J$                                                 | 29 |
| Example                                                              | 29 |
| Example                                                              | 29 |
| Nilpotent                                                            | 30 |
| Applications of Jordan Form                                          | 30 |
| Overall Objective                                                    | 30 |
| Analytic function                                                    | 31 |
| Theorem: analytic over reals to convergent over the complex          | 31 |
| Theorem: analytic function of a diagonalizable matrix                | 31 |
| Proof                                                                | 31 |
| Theorem: analytic function of a diagonalizable matirx                | 32 |
| Proof                                                                | 32 |
| Example                                                              | 32 |
| Example                                                              | 32 |
| Chapter 4: Ordinary Differential Equations                           | 33 |
| Definition of Differential Equation                                  | 33 |
| Definition of Ordinary Differential Equation                         | 33 |
| Example                                                              | 33 |
| Definition of Partial Differential Equations                         | 33 |
| Definition of Order                                                  | 33 |
| Goals                                                                | 33 |
| Definition of Explicit Differential equations                        | 34 |
| Example                                                              | 34 |
| Existence and Uniqueness Theorem for explicit differential equations | 34 |
| Proof                                                                | 34 |
| Definition of Linear Differential Equations                          | 34 |
| Solution to First-Order Linear Differential Equation                 | 35 |
| Proof                                                                | 35 |
| Existence and Uniqueness of First Order Linear Differential Equation | 35 |
| Example                                                              | 35 |
| Separable Equation                                                   | 36 |
| Example                                                              | 36 |
| Stationary Definition                                                | 36 |
| Example                                                              | 36 |
| Change of variables                                                  | 37 |
| Example                                                              | 37 |
| Example                                                              | 38 |
| Example                                                              | 38 |
| Exact Equations and Integrating Factor                               | 39 |
| Example                                                              | 39 |
| Exact Definition                                                     | 39 |

| Theorem for seeing if Exact                                                   | 39 |
|-------------------------------------------------------------------------------|----|
| Proof                                                                         | 39 |
| Example                                                                       | 40 |
| Example                                                                       | 40 |
| Example                                                                       | 41 |
| To find an integrating factor                                                 | 41 |
| Example                                                                       | 41 |
| Chapter 5: Existence and Uniqueness Theorems                                  | 42 |
| Existence and Uniqueness Theorem for Linear Equations                         | 42 |
| Example                                                                       | 42 |
| Example                                                                       | 43 |
| Picard Iterates                                                               | 43 |
| Proofish                                                                      | 44 |
| Example                                                                       | 44 |
| Example                                                                       | 44 |
| Thoughts                                                                      | 45 |
| Examples of knowing the existence but not finding it                          | 45 |
| Example of Summation converging                                               | 45 |
| Example                                                                       | 46 |
| Integral Comparison Theorems                                                  | 46 |
| Mean Value Theorem                                                            | 46 |
| First-Order Differential Equations Existence and Uniqueness                   | 47 |
| Proofish of existence                                                         | 47 |
| Example                                                                       | 47 |
| Proof of Uniqueness                                                           | 48 |
| Example                                                                       | 50 |
| Chapter 6: Numerical Methods                                                  | 50 |
| The Lagrange Remainder Theorem                                                | 50 |
| Euler's Method                                                                | 51 |
| Getting the idea                                                              | 51 |
| Example                                                                       | 51 |
| Euler's Method: Error                                                         | 51 |
| Example                                                                       | 52 |
| Alternative Approximations                                                    | 53 |
| Left Endpoint                                                                 | 53 |
| Runge-Midpoint                                                                | 53 |
| Runge-Trapezoidal                                                             | 53 |
| Runge-Kutta                                                                   | 53 |
| Example                                                                       | 54 |
| Example                                                                       | 54 |
| Chapter 7: Higher Order Linear Equations                                      | 54 |
| Definition of Linear Equations                                                | 54 |
| Uniqueness and Existence Theorem for Differential Linear Equations            | 55 |
| General Solution to a linear differential equation from a particular solution | 55 |
| General Solution                                                              | 55 |

| Example                                                     | 55 |
|-------------------------------------------------------------|----|
| Particular solution                                         | 56 |
| Find the General Solution to a linear differential equation | 56 |
| Find the general solution to homogenous linear equations    | 56 |
| Example                                                     | 56 |
| Is this always the general solution?                        | 57 |
| Dimension of the Solution Set for a Linear Equation         | 57 |
| Proof                                                       | 57 |
| Fundamental Set of Solutions                                | 58 |
| Natural Fundamental Set of Solutions                        | 58 |
| Example 7.4                                                 | 59 |
| Wronskian                                                   | 59 |
| Generic Example                                             | 60 |
| Abel's Theorem                                              | 60 |
| Proof of the furthermore                                    | 60 |
| Proof of the rest of the theorem                            | 61 |
| Example                                                     | 61 |
| Example                                                     | 62 |
| Theorem on the Wroskian's functioning                       | 62 |
| Proof                                                       | 62 |
| Chapter 8: Linear Equations with Constant Coefficients      | 63 |
| Example                                                     | 63 |
| Example                                                     | 63 |
| Definition of Characteristic Polynomial                     | 63 |
| Linear Independence of Exponentials                         | 64 |
| Proof                                                       | 64 |
| Proof 2, electric boogalo                                   | 64 |
| Example                                                     | 64 |
| Example                                                     | 65 |
| Key Identities (Showing why $n$ repeated roots)             | 66 |
| Proofish                                                    | 66 |
| Definition of multiplicity                                  | 67 |
| Theorem on multiplicity after derivatives                   | 67 |
| Proofish                                                    | 67 |
| Zero derivatives from repeated roots                        | 67 |
| Theorem to find solutions of differential equation          | 67 |
| Example                                                     | 68 |
| Reduction of Order                                          | 68 |
| Example                                                     | 68 |
| Example                                                     | 69 |
| Method of Undetermined Coefficients                         | 69 |
| Example                                                     | 69 |
| Example                                                     | 70 |
| Example                                                     | 70 |
| Example                                                     | 70 |

| Example                                                                      | 71 |
|------------------------------------------------------------------------------|----|
| Example using the theorem                                                    | 71 |
| Variation of Parameters                                                      | 72 |
| Example                                                                      | 73 |
| Chapter 9: Power Series Solutions                                            | 73 |
| The Idea                                                                     | 73 |
| Analytic                                                                     | 74 |
| Composition of analytic functions via addition, multiplication, and division | 74 |
| Ordinary Point                                                               | 74 |
| Theorem for showing that an answer is analytic                               | 74 |
| Example                                                                      | 74 |
| Example                                                                      | 76 |
| Example                                                                      | 78 |
| Singular Point                                                               | 79 |
| Example                                                                      | 79 |
| Series solutions near regular singular points                                | 79 |
| Euler's Equation                                                             | 79 |
| Solution                                                                     | 79 |
| Example                                                                      | 79 |
| Regular Singularity                                                          | 80 |
| Motivation                                                                   | 80 |
| Example                                                                      | 81 |
| Example                                                                      | 81 |
| Theorem                                                                      | 83 |
| Proofish                                                                     | 84 |
| Example                                                                      | 84 |
| Chapter 10: Laplace Transform                                                | 86 |
| Laplace Transform                                                            | 86 |
| Example                                                                      | 86 |
| Table of Laplaces                                                            | 87 |
| What can go wrong with the Laplace                                           | 87 |
| Piecewise continuous                                                         | 87 |
| Exponential Order                                                            | 87 |
| Examples                                                                     |    |
| Theorem on the existence of the Laplace                                      | 88 |
| Equality of Laplaces                                                         | 88 |
| Examples                                                                     | 88 |
| Example                                                                      |    |
| Theorem on the order of a solution                                           |    |
| Theorem on the Laplace of a derived function                                 | 88 |
| Proof                                                                        |    |
| How to find a particular solution                                            |    |
| Theorem on derivatives                                                       |    |
| Proof                                                                        |    |
| Examples                                                                     | 90 |

| Example                                                                 | 90  |
|-------------------------------------------------------------------------|-----|
| Example                                                                 | 90  |
| Example                                                                 | 90  |
| Definition of Heaviside                                                 | 91  |
| Example                                                                 | 91  |
| Example                                                                 | 91  |
| Example                                                                 | 92  |
| Convolution                                                             | 92  |
| Product of Laplaces                                                     | 93  |
| Proofish                                                                | 93  |
| Example                                                                 | 93  |
| Chapter 11: Systems of Differential Equations                           | 94  |
| First-Order System                                                      | 94  |
| Example                                                                 | 94  |
| Linear Systems                                                          | 95  |
| Example                                                                 | 95  |
| Example                                                                 | 96  |
| Example                                                                 | 96  |
| To solve a $n$ th order linear differential equation                    | 97  |
| Existence and Uniqueness theorem for First-Order Differential Equations | 97  |
| Example                                                                 | 97  |
| Dimension of First-order Homogenous Linear System                       | 98  |
| Proof                                                                   | 98  |
| Wronskian                                                               | 99  |
| Wronskian shows when a solution works                                   | 99  |
| Proof                                                                   | 99  |
| Relation to other Wronskian                                             | 99  |
| Wronskian is never zero if it isn't zero at a point                     | 100 |
| Proof                                                                   | 100 |
| Abel's Theorem                                                          | 101 |
| Fundamental Matrix                                                      | 101 |
| Solutions from Fundamental Matrix                                       | 101 |
| Example                                                                 | 101 |
| Chapter 12: Linear Systems with Constant Coefficients                   | 102 |
| Homogenous Linear Systems with Constant Coefficients                    | 102 |
| Example                                                                 | 103 |
| A different way to find $e^{tA}$                                        | 104 |
| Example                                                                 | 104 |
| Example                                                                 | 105 |
| Example                                                                 | 105 |
| Example                                                                 | 105 |
| Eigenpair Method                                                        | 107 |
| Theorem for eigenpair method                                            | 107 |
| Example                                                                 | 107 |
| Example                                                                 | 107 |

| Solution                                                                       | 108 |
|--------------------------------------------------------------------------------|-----|
| Example                                                                        | 108 |
| Example                                                                        | 110 |
| Variation of Parameters                                                        | 110 |
| Example                                                                        | 111 |
| Laplace Transform                                                              | 112 |
| Example                                                                        | 112 |
| Chapter 13: Qualitative Theory of Differential Equations                       | 113 |
| Definition of Autonomous System:                                               | 113 |
| Stationary                                                                     | 113 |
| Semistationary                                                                 | 113 |
| Example                                                                        | 113 |
| Example                                                                        | 114 |
| Example                                                                        | 114 |
| Questions                                                                      |     |
| Orbit Equation                                                                 | 114 |
| Example                                                                        | 115 |
| Stability                                                                      |     |
| Notes                                                                          | 115 |
| Example                                                                        |     |
| Example                                                                        | 116 |
| Example                                                                        | 117 |
| Example                                                                        | 118 |
| Asymptotically stable                                                          | 118 |
| Vibe-based Stability Examples                                                  | 118 |
| Stability of the solutions to $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A\vec{x}$ | 119 |
| Example                                                                        |     |
| Theorem on Stability in nonlinear systems near stationary solutions            | 119 |
| Getting the vibe of the answer                                                 | 120 |
| Example                                                                        | 120 |
| Example                                                                        | 121 |
| Review                                                                         | 121 |
| Example of an inverse Laplace                                                  | 121 |
| Example 8.6                                                                    | 122 |
| Chapter 14: Orbits and PHase Plane Portraits                                   | 123 |
| Orbits                                                                         | 123 |
| Define                                                                         | 123 |
| Existence and Uniqueness Theorem for Autonomous Systems                        | 123 |
| Proof                                                                          | 123 |
| Theorem on Properties of Orbits                                                | 124 |
| Proof                                                                          | 124 |
| Arc Length                                                                     | 124 |
| Example                                                                        | 124 |
| Example                                                                        | 125 |
| Example                                                                        | 125 |

| Phase plane Portraits     | 126 |
|---------------------------|-----|
| Example                   | 126 |
| Example                   |     |
| Solution                  | 127 |
| Example                   | 128 |
| Example                   |     |
| Example                   | 131 |
| Example                   |     |
| Example                   |     |
| Poincare-Bendixon Theorem | 134 |
| Example                   | 134 |
| Example                   | 135 |
| Example                   | 136 |
| Solution                  |     |
|                           |     |

# **Chapter 1: Review and Preliminaries**

## **Complex Numbers**

```
\mathbb{C} = \{a+bi \mid a,b \in \mathbb{R}\} i^2 = -1 (a+bi) + (c+di) = (a+c) + (b+d)i (a+bi)(c+di) = (ac-bd) + (ad+bc)i a = \text{The real part of } a+bi = \text{Re}(a+bi) b = \text{The imaginary part of } a+bi = \text{Im}(a+bi) a+bi = c+di \Leftrightarrow a=c \land b=d
```

Figure 1

# **Definition: Linear Dependence**

If  $\vec{v}_1, ..., \vec{v}_n$  are linear dependent:

- 1. One of  $\vec{v}_1,...,\vec{v}_n$  is a linear combination of the others.
- 2.  $\mathbb{c}_1 \vec{v}_1 + \dots + \mathbb{c}_n \vec{v}_n = \vec{0}$  for some  $\mathbb{c}_1, \dots, \mathbb{c}_n \in \mathbb{F}$

# Field properties of complex numbers

For every  $x, y, x \in \mathbb{C}$ 

- 1. (Commutativity) x + y = y + x, xy = yx
- 2. (Associativity) (x + y) + z = x + (y + z), (xy)z = x(yz)
- 3. (Additive Identity) x + 0 = x where 0 = 0 + 0i
- 4. (Additive Inverse) There is  $t \in \mathbb{C}$  for which x+t=0. When x=a+bi, t=-a+(-b)i
- 5. (Multiplicative Inverse) If  $x \neq 0$ , there is some  $t \in \mathbb{C}$  for which xt = 1. t is denoted by  $x^{-1}$  or  $\frac{1}{x}$
- 6. (Distributivity) x(y + z) = x y + x z

# Properties of complex conjugate and norm

For every  $z,w\in\mathbb{C}$ 

1.  $\overline{zw} = \overline{z} \ \overline{w}$ 

2. 
$$|zw| = |z| |w|$$

3. 
$$|z|^2 = z\overline{z}$$

4. (Triangle Inequality)  $|z+w| \le |z| + |w|$ 

## **Example**

Find the additive and multiplicative inverse of 3 + 2i.

$$(3+2i) + \underbrace{-3 + (-2)i}_{\text{inverse}} = 0$$

$$\frac{3+2i}{3+2i} = \frac{(3+2i)(3-2i)}{(3+2i)(3-2i)} = (3+2i)\underbrace{\frac{3-2i}{13}}_{\text{inverse}} = \frac{13}{13} = 1$$

#### **Theorem**

$$\begin{split} &\cos(\theta) + i\sin(\theta) \\ &= 1 + \frac{i\theta}{1!} - \frac{i\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} + \cdots \\ &= 1 + \frac{i\theta}{1!} + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \cdots \\ &= e^{i\theta} \end{split}$$

therefore  $\cos(\theta) + i\sin(\theta) = e^{i\theta}$  via

### **Theorem**

1.  $e^{ix}e^{iy} = e^{i(x+y)}$ 

2. (De Moivre's Forumla) $\left(e^{ix}\right)^n=\left(e^{inx}\right)$ 

#### **Example**

Evaluate  $\int e^x \cos(x) dx$ .

$$\begin{split} e^x \cos(x) &= \mathrm{Re} \big( e^{(1+i)x} \big) \\ \int e^x \cos(x) dx &= \mathrm{Re} \bigg( \int e^{(1+i)x} dx \bigg) \bigg( \mathrm{via} \int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx \bigg) \\ &= \mathrm{Re} \bigg( \frac{e^{(1+i)x}}{1+i} + \mathbb{c} \bigg) \\ &= \mathrm{Re} \bigg( \frac{e^{(1+i)x}}{2} (1-i) + \mathbb{c} \bigg) \\ &= \mathrm{Re} \bigg( \frac{1}{2} (1-i)(e^x) (\cos(x) + i \sin(x)) + \mathbb{c} \bigg) \\ &= \frac{1}{2} e^x (\cos(x) + \sin(x)) + \mathbb{c}_1 \end{split}$$

# Vector Spaces, Subspaces, Bases

$$\mathbb{F} = \mathbb{R} \text{ or } \mathbb{C}; \vec{u}, \vec{v} \in V, c \in \mathbb{F}$$
 
$$\vec{u} + \vec{v} \in V$$
 
$$c\vec{v} \in V$$

If  $\mathbb{F} = \mathbb{R}$ , we say that V is a real vector space. If  $\mathbb{F} = \mathbb{C}$ , we say V is a complex vector space.

## **Examples of vector spaces**

 $\mathbb{R}^n$  is a real vector space.  $\mathbb{C}^n$  is a complex vector space.

 $M_{m imes n}(\mathbb{R})$  is a real vector space. (+ is a matrix addition and  $\cdot$  is entry wise).

 $M_n(\mathbb{R}) = M_{nxn}(\mathbb{R})$  is a real vector space.

 $P_n(\mathbb{R})=\{a_0+a_1t+\cdots+a_nt^n\mid a_0,...,a_n\in\mathbb{R}\}$  is a real vector space.

 $C(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\}\$ is a real vector space.

 $C^m(\mathbb{R}) = \{f: \mathbb{R} \to \mathbb{R}: f \text{ is } C^m\}$  is a real vector space.

## **Subspace Criterion**

- 1.  $\mathbb{R}^n$  is a subspace of  $\mathbb{C}^n$  as a real vector space (not closed with a complex scalar).
- 2.  $C^1(\mathbb{R})$  is a subspace of  $C(\mathbb{R})$

$$C^1(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is } C^1 \}$$

$$C(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous} \}$$

 $0_{C(\mathbb{R})}=$  the constant function 0

If  $f,g\in C^1(\mathbb{R})$  then (f+g)'=f'+g' is continuous. Also, (cf)'=cf' is continuous  $\forall c\in\mathbb{R}$ 

## Example: Find a basis for ${\mathbb C}$ once as a real and once as a complex vector space.

1.  $\mathbb{C}$  as a real vector space.

We claim  $\{1, i\}$  is a basis for  $\mathbb{C}$ . Now prove linear independence and spanning.

#### Linear independence

Assume  $c_1 1 + c_2 i = 0$  for some  $c_1, c_2 \in \mathbb{R}$ .

Then, based on the definition of equals for complex numbers,  $\mathbb{c}_1 = \mathbb{c}_2 = 0, \div 1, i$  are <u>linearly</u> independent.

### **Spanning**

Let  $x \in \mathbb{C}$ . By definition, x = a + bi for some  $a, b \in \mathbb{R} \Rightarrow x$  is a linear combination of 1, i. Thus, 1, i is a basis for  $\mathbb{C}$ .

Therefore,  $\{1,i\}$  is basis for  $\mathbb{C}$ , and  $\dim_{\mathbb{R}} \mathbb{C} = 2$  (the dimension of  $\mathbb{C}$  as real vector space is 2).

2.  $\{1\}$  is a basis for  $\mathbb{C}$  as a complex vector space.

### Linear independence

 $c_1 1 = 0 \Rightarrow c_1 = 0 \Rightarrow \{1\}$  is linear independent.

### **Spanning**

Let  $x \in \mathbb{C}$ . Then  $x = x1 \Rightarrow \{1\}$  is spanning.

## **Example: Span**

$$\vec{v}_1,...,\vec{v}_n \in V$$

$$\mathrm{Span}\{\vec{v}_1,...,\vec{v}_n\} = \left\{ \textstyle\sum_{j=1}^n \mathbb{c}_j \vec{v_j} \mid \mathbb{c}_1,...,\mathbb{c}_n \in \mathbb{F} \right\} \text{ is a subspace of F}$$

## **Linear Transformation and Matrices**

These statements are equivalent:

- 1.  $T(\vec{u} + c\vec{v}) = T(\vec{u}) + cT(\vec{v})$
- 2.  $T(a\vec{u} + b\vec{v}) + aT(\vec{u}) + bT(\vec{v})$
- 3. T is linear

# Example 1.18

- a.  $T(\vec{u}) = A\vec{u}; A \in M_{m \times n}(\mathbb{F})$  is fixed,  $T: \mathbb{F}^n \to \mathbb{F}^m$
- b. S:  $C(\mathbb{R}) \to C(\mathbb{R});$  S(f) S(f)  $S(x) = \int_0^x f(t)dt$  is linear

Let 
$$f, g \in C(\mathbb{R}), c \in \mathbb{R}$$

$$\begin{split} S(f+cg)(x) &= \int_0^x (f+cg)(t)dt = \int_0^x f(t) + cg(t)dt \\ &= \int_0^x f(t) + c \int_0^x g(t)dt = S(f)(x) + cS(g)(x) \\ &\Rightarrow S(f+cg) = S(f) + cS(g) \\ &\Rightarrow S \text{ is linear } \Box \end{split}$$

c. 
$$L: C^1(\mathbb{R}) \to C(\mathbb{R}); L(f)(x) = f'(x)$$
.

d. 
$$U: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), U(f)(x) = f''(x) + (2x+1)f'(x) - e^x f(x)$$

Let 
$$f, g \in C^{\infty}(\mathbb{R}), c \in \mathbb{R}$$

$$\begin{split} U(f+cg)(x) &= (f+cg)''(x) + (2x+1)(f+cg)'(x) - e^x(f+cg)(x) \\ &= \underline{f''(x)} + cg''(x) + \underline{(2x+1)f'(x)} + c(2x+1)g'(x) - \underline{e^xf(x)} - ce^xg(x) \\ &= \underline{f''(x)} + (2x+1)f'(x) - e^xf(x) + cg''(x) + c(2x+1)g'(x) - ce^xg(x) \\ &= U(f)(x) + cU(g)(x) \\ &\Rightarrow U(f+cg) = U(f) + cU(g) \Rightarrow \text{U is linear } \Box \end{split}$$

To solve  $y'' + (2x+1)y' - e^x y = 0$  we need to find  $\operatorname{Ker} U$ .

# Definition of $\mathrm{tr}$ , trace

Define  $\mathrm{tr}:M_{n(\mathbb{F})}\to\mathbb{F}$  called trace by  $\mathrm{tr}(A)$  is the sum of it's diagonal entries. Then  $\mathrm{tr}$  is linear.

$$\operatorname{tr}\!\left(\begin{pmatrix}a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn}\end{pmatrix}\right) = \sum_{j=1}^n a_{jj}$$

### **Flatness Theorem**



### **Example**

$$T:\mathbb{R}^2\to\mathbb{R}$$
 
$$T(x,y)=y-x \text{ is linear}$$
 The line  $y=x$  is Ker  $T=T^{-1}(\{0\})=\{(x,y)\in\mathbb{R}^2\mid T(x,y)=0\}$  The line  $y=x+1$  is  $T^{-1}(\{1\})=\{(x,y)\in\mathbb{R}^2\mid T(x,y)=1\}$ 

#### **Theorem**

Let  $T:V\to W$  be a linear transformation between vector spaces, and let  $\vec w\in W$ . Then either the inverse image  $T^{-1}(\{\vec w\})$  is empty or  $T^{-1}=\vec v+\operatorname{Ker} T=\{\vec v+\vec u\mid \vec u\in\operatorname{Ker} T\}$  for every  $\vec v\in T^{-1}(\{\vec w\})$ 

#### **Proof**

# **Isomorphism**

A linear transformation that is bijective.

### **Example**

$$T:P_n\to\mathbb{F}^{n+1}, T(a_0+a_1t+\cdots+a_nt^n)=(a_0,...,a_n)$$
 is an isomorphism.

Because it preserves addition and scalar multiplication, its "basically" the same structure.

# **Chapter 2: Diagonalization**

### **Coordinate vector**

Let  $B=\left(\vec{b_1},...,\vec{b_n}\right)$  be an ordered basis for a vector space V. The coordinate vector of a vector  $\vec{v}\in V$  relative to B is a column vector  $\begin{pmatrix} \mathbf{c_1}\\ \vdots\\ \mathbf{c_n} \end{pmatrix}$  such that  $\vec{v}=\mathbf{c_1}\vec{v_1}+\cdots+\mathbf{c_n}\vec{v_n}$ . We write  $\left[\vec{v}\right]_N=\begin{pmatrix} \mathbf{c_1}\\ \vdots\\ \mathbf{c_n} \end{pmatrix}$ 

### **Example**

Find  $[2t+1]_B$  where B=(1,1+t) is a basis for  $P_1$ .

**Solution:** We need to write  $2t+1=\mathbb{c}_11+\mathbb{c}_2(1+t)=(\mathbb{c}_1+\mathbb{c}_2)+\mathbb{c}_2t.$ 

$$\begin{cases} \mathbb{c}_1 + \mathbb{c}_2 = 1 \\ \mathbb{c}_2 = 2 \end{cases} \rightarrow \begin{cases} \mathbb{c}_1 = -1 \\ \mathbb{c}_2 = 2 \end{cases}$$

$$\left[2t+1\right]_{B} = \begin{pmatrix} -1\\2 \end{pmatrix}$$

# Coordinate vectors are isomorphisms

 $B=\left(\vec{b_1},...,\vec{b_n}\right)$  be an ordered basis for a vector space V. Then  $\left[.\right]_B:V o\mathbb{F}^n$  is an isomorphism.

#### **Proof**

Linearity:

$$\begin{aligned} \operatorname{Let} \ \vec{v}, \vec{w} \in V, c \in \mathbb{F} \\ \operatorname{Since} \ B \ \text{is a basis} \ \vec{v} &= \sum_{j=1}^n \mathbb{c}_j \vec{b_j} \ \text{and} \ \vec{w} = \sum_{j=1}^n \mathbb{d}_j \vec{b_j} \Rightarrow \vec{v} + c \vec{w} = \sum_{j=1}^n \left( \mathbb{c}_j + c \mathbb{d}_j \right) \vec{b_j} \\ \operatorname{Thus}, \left[ \vec{v} + c \vec{w} \right] &= \begin{pmatrix} \mathbb{c}_1 + c \mathbb{d}_1 \\ \vdots \\ \mathbb{c}_n + c \mathbb{d}_n \end{pmatrix} = \begin{pmatrix} \mathbb{c}_1 \\ \vdots \\ \mathbb{c}_n \end{pmatrix} + c \begin{pmatrix} \mathbb{d}_1 \\ \vdots \\ \mathbb{d}_n \end{pmatrix} = \left[ \vec{v} \right]_B + c \left[ \vec{w} \right]_B \end{aligned}$$

One-to-one:

Suppose 
$$\begin{bmatrix} \vec{v} \end{bmatrix}_B = \begin{bmatrix} \vec{w} \end{bmatrix}_B = \begin{pmatrix} \mathbb{c}_1 \\ \vdots \\ \mathbb{c}_n \end{pmatrix}$$
  
By definition of  $\begin{bmatrix} \end{bmatrix}_B, \vec{v} = \sum_{j=1}^n \mathbb{c}_j \vec{b_j}$  and  $\vec{w} = \sum_{j=1}^n \mathbb{c}_j \vec{b_j}$   
 $\therefore \vec{v} = \vec{w}.$ 

Onto:

Let 
$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{F}^n$$
  
Then,  $\left[\sum_{j=1}^n a_j \vec{b_j}\right]_B = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ 

# **Change of Coordinates Theorem**

Let V,W be vector spaces over  $\mathbb F$  with ordered bases  $A=(\vec{a_1},...,\vec{a_n})$  and  $B=\left(\vec{b_1},...,\vec{b_n}\right)$ , respectively. Let  $T:V\to W$  be a linear transformation

Then, there is a unique matrix  $\underbrace{A}_{M_{m \times n}(\mathbb{F})}$  such that  $\left[T(\vec{v})\right]_B = A[\vec{v}]_A$  for all  $\vec{v} \in V$ .

$$\text{Furthermore, } A = \left( \left[ T(\vec{a_1}) \right]_B \ \left[ T(\vec{a_2}) \right]_B \ \cdots \ \left[ T(\overrightarrow{a_n}) \right]_B \right)$$

Notation: This matrix is denoted by  $\left[T\right]_{BA}$ ,  $\left[T(\vec{v})\right]_{B}=\left[T\right]_{BA}\left[\vec{v}\right]_{A}$ 

#### **Proof**

$$\begin{split} \operatorname{Let} \ v \in V. \ \operatorname{Suppose} \ \vec{v} &= \sum_{j=1}^n \mathbb{c}_j \vec{a_j}. \\ \left[ T(\vec{v}) \right]_B \underset{T \text{ is linear}}{=} \left[ \sum_{j=1}^n \mathbb{c}_j T(\vec{a_j}) \right]_B \underset{\text{is linear}}{=} \sum_{j=1}^n \mathbb{c}_j \left[ T(\vec{a_j}) \right]_B \\ &= \left( \left[ T(\vec{a_1}) \right]_B \ \left[ T(\vec{a_2}) \right]_B \ \cdots \ \left[ T(\overrightarrow{a_n}) \right]_B \right) \begin{pmatrix} \mathbb{c}_1 \\ \vdots \\ \mathbb{c}_n \end{pmatrix} \end{split}$$

#### Uniqueness

Suppose 
$$A[\vec{v}]_A = B[\vec{v}]_A \forall v \in V$$
 and  $A, B \in M_{m \times n}(\mathbb{F})$   
Replace  $\vec{v}$  by  $\vec{a_j} \Rightarrow A[\vec{a_j}]_A = B[\vec{a_j}]_A \Rightarrow A\vec{e_j} = B\vec{e_j}$   
 $\therefore$  The  $j$ th column of  $A =$  The  $j$ th column of  $B \square$ 

### **Example**

Consider the linear transformation  $T:\mathbb{F}^2\to P_1$  given by T(a,b)=a+b+(a-b)t. Write down the matrix of T relative to:

a. 
$$A=(\vec{e_1},\vec{e_2})$$
 for  $\mathbb{F}^2$  and  $B=(1,t)$  for  $P_1.$ 

Solution:

$$\left[T\right]_{BA} = \left(\left[T(1,0)\right]_{B} \ \left[T(0,1)\right]_{B}\right) = \left(\left[1+t\right]_{B} \ \left[1-t\right]_{B}\right) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

b. A=((1,1),(0,1)) for  $\mathbb{F}^2$  and B=(t,1-t) for  $P_1$ .

Solution:

$$\left[T\right]_{BA} = \left(\left[T(1,1)\right]_{B} \ \left[T(0,1)\right]_{B}\right) = \left(\left[2\right]_{B} \ \left[1-t\right]_{B}\right) = \begin{pmatrix} 2 & 0 \\ 2 & 1 \end{pmatrix}$$

#### **Conversion Theorem**

Suppose U,V,W are vector spaces over  $\mathbb F$  with ordered bases A,B,C, respectively. Let  $S:U\to V$  and  $T:V\to W$  be linear transformations. Then,  $T\circ S$  is linear. Furthermore,  $[T\circ S]_{CA}=[T]_{CB}[S]_{BA}$ .

# **Change of Coordinates Matrix**

Consider  $I:V\to V$  defined by  $I(\vec{x})\to \vec{x}$ . Let A,B be ordered bases for V.

$$\begin{split} \left[I(\vec{v})\right]_{B} &= \left[I\right]_{BA} \!\!\left[\vec{v}\right]_{A} \! \forall \vec{v} \in V \\ \left[\vec{v}\right]_{B} &= \underbrace{\left[I\right]_{BA}} \!\!\left[\vec{v}\right]_{A} \end{split}$$

The change of coordinate matrix from  $A \rightarrow E$ 

## **Inverse of Change of Coordinates Matrix**

$$\left[I\right]_{BA} = \left[I\right]_{AB}^{-1}$$

**Proof** 

$$\begin{split} \left[I\right]_{AB}\!\left[I\right]_{BA} &= \left[I\circ I\right]_{AA} = \left[I\right]_{AA} \\ \text{Suppose } A &= \left(\overrightarrow{a_1},...,\overrightarrow{a_n}\right). \text{ Then } \left[I\right]_{AA} &= \left(\left[I(\overrightarrow{a_1})\right]_A \ \cdots \ \left[I(\overrightarrow{a_n})\right]_A\right) = \left(\left[\overrightarrow{a_1}\right]_A \ \cdots \ \left[\overrightarrow{a_n}\right]_A\right) = \left(\overrightarrow{e_1} \ \cdots \ \overrightarrow{e_n}\right) = I \\ \text{by the IVT, } \left[I\right]_{BA} &= \left[I\right]_{AB}^{-1} \end{split}$$

#### **Example**

Write  $\binom{2}{3}$  in the ordered basis  $B = \left(\binom{1}{2}, \binom{3}{5}\right)$  using a change of coordinates matrix.

Solution:

$$\text{Let } S = (\vec{e_1}, \vec{e_2}). \text{ We know } \begin{bmatrix} \binom{2}{3} \end{bmatrix}_S = \binom{2}{3}.$$
 We need to find  $[I]_{BS} = [I]_{SB}^{-1} = \left( [I(1,2)]_S \ [I(3,5)]_S \right)^{-1} = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}^{-1}$  
$$\begin{bmatrix} \binom{2}{3} \end{bmatrix}_B = \underbrace{\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}^{-1}}_{[I]_{BS}} \underbrace{\begin{pmatrix} 2 \\ 3 \end{pmatrix}}_S = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

### **Example**

Find the change of coordinate matrix from the ordered basis A=(1,1+t) to the ordered basis B=(1+2t,1-2t) of  $P_1$ .

Solution: We are looking for  $\left[I\right]_{BA}$ 

$$\begin{split} \text{Let } S &= (1,t) \\ \left[ I \right]_{BA} &= \left[ I \right]_{BS} \left[ I \right]_{SA} = \left[ I \right]_{SB}^{-1} \left( \begin{bmatrix} 1 \end{bmatrix}_{S} \ \begin{bmatrix} 1+t \end{bmatrix} \right) \\ &= \left( \begin{bmatrix} 1+2t \end{bmatrix}_{S} \ \begin{bmatrix} 1-2t \end{bmatrix}_{S} \right)^{-1} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{3}{4} \\ \frac{1}{2} & \frac{1}{4} \end{pmatrix} \end{split}$$

## **Similarity**

We say matrices A, B are similar if  $A = PBP^{-1}$  for some invertible matrix P.

### Similarity from Change of Coordinates

Suppose A and B are ordered bases of a vector space V and  $T: V \to V$  is a linear transformation.

$$\begin{split} \left[T\right]_{BB} &= \left[I \circ T \circ I\right]_{BB} = \left[I\right]_{BA} \left[T\right]_{AA} \left[I\right]_{AB} = \left[I\right]_{BA} \left[T\right]_{AA} \left[I\right]_{BA}^{-1} \\ &\left[T\right]_{BB} = \left[I\right]_{BA} \left[T\right]_{AA} \left[I\right]_{BA}^{-1} \end{split}$$

## **Eigenvectors and Diagonalization**

#### **Example**

Evaluate 
$$A^{100}\vec{v}$$
,  $A=\begin{pmatrix}2&3\\-4&1\end{pmatrix}$ ,  $\vec{v}=\begin{pmatrix}1\\-1\end{pmatrix}$  
$$A\vec{v}=\begin{pmatrix}2&3\\-4&1\end{pmatrix}\begin{pmatrix}1\\-1\end{pmatrix}=\begin{pmatrix}5\\-5\end{pmatrix}=5\vec{v}$$
 
$$A^2\vec{v}=A(5\vec{v})=5A\vec{v}=5^2\vec{v}$$
 
$$\vdots$$
 
$$A^{100}\vec{v}=5^{100}\vec{v}$$

 $\vec{v}$  is an eigenvector, and 5 is its eigenvalue.

# Eigenvalues, Eigenvectors and Eigenpairs

Suppose  $T:V\to V$  is a linear transformation and  $\vec{v}\in V$  is a nonzero vector such that  $\exists\lambda\in\mathbb{F},T(\vec{v})=\lambda\vec{v}$ . We say  $\lambda$  is an eigenvalue,  $\vec{v}$  is an eigenvector, and  $(\lambda,\vec{v})$  is an eigenpair for T. The same notion is also defined for square matrices.

# Eigenvalues from the characteristic polynomial theorem

 $\lambda$  is an eigenvalue for A iff  $\det(A - \lambda I) = 0$ .

# **Characteristic Polynomial**

The polynomial det(A-zI) is called the characteristic polynomial of A.

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$
 
$$A - \lambda I = \begin{pmatrix} a_{11} - \lambda & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} - \lambda \end{pmatrix} = \text{polynomial } P(\lambda)$$

## **Example finding Eigenvalues**

Find the eigenvalues of  $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$  once as an element of  $M_2(\mathbb{R})$  and once as an element of  $M_2(\mathbb{C})$ .

Over  $\mathbb R$ 

$$\det(A - zI) = \det\begin{pmatrix} 1 - z & 1 \\ -1 & 1 - z \end{pmatrix} = (1 - z)^2 + 1 = 0$$
$$(1 - z)^2 = -1, \text{ which has no solution over } \mathbb{R}$$

Over  $\mathbb C$ 

$$(1-z)^2 = -1$$
$$1-z = \pm i$$
$$z = 1 \pm i \quad \Box$$

# Why diagonal matrices are nice

$$\begin{pmatrix} a & 0 \\ b \\ 0 & c \end{pmatrix} \begin{pmatrix} x & 0 \\ y \\ 0 & z \end{pmatrix} = \begin{pmatrix} ax & 0 \\ by \\ 0 & cz \end{pmatrix}$$

So easy 😌.

# **Diagonalizable Matrix Definition**

A square matrix A is said to be <u>diagonalizable</u> if  $\exists$  a diagonal matrix D and an invertible matrix P such that  $A = PDP^{-1}$ . In other words, A and D are similar.

diag definition

$$\operatorname{diag}(\lambda_1,...,\lambda_n) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

# Find the Diagonalization of a Matrix

A matrix  $A\in M_{n(\mathbb{F})}$  is diagonalizable iff there is a basis for  $\mathbb{F}^n$  consisting of eigenvectors of A. Furthemore, if  $(\lambda_1, \vec{v}_1), ..., (\lambda_n, \vec{v}_n)$  are eigenpairs of A whose eigenvectors form a basis for  $\mathbb{F}^n$ , then  $A=PDP^{-1}$  where  $P=(\vec{v}_1\ \cdots\ \vec{v}_n)$  and  $D=\begin{pmatrix} \lambda_1 & 0 \\ \ddots & \lambda_n \end{pmatrix}$ .

## **Proof**

$$(\Rightarrow) \text{ Suppose } A = PDP^{-1}, D = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}, P = (\vec{v}_1 \ \cdots \ \vec{v}_n)$$
 
$$\Rightarrow AP = PD \Rightarrow A(\vec{v}_1 \ \cdots \ \vec{v}_n) = (\vec{v}_1 \ \cdots \ \vec{v}_n) \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

The jth column:  $Av_j = \lambda_j \vec{v_j} \Rightarrow \left(\lambda_j, \vec{v_j}\right)$  is an eigenpair. (By the definition of matrix-matrix multiplication) Since P is invertible, its columns  $\vec{v}_1, ..., \vec{v}_n$  form a basis for  $\mathbb{F}^n$ .

$$( \Leftarrow ) \text{ Suppose } (\lambda_1, \vec{v}_1), \dots, (\lambda_n, \vec{v}_n) \text{ are eigenpairs for } A \text{ and } \vec{v}_1, \dots, \vec{v}_n \text{ form a basis for } \mathbb{F}^n \\ \text{ Define } T : \mathbb{F}^n \to \mathbb{F}^n, T(\vec{x}) = A\vec{x}. \text{ Let } S = (\vec{e}_1, \dots, \vec{e}_n) \text{ and } B = (\vec{v}_1, \dots, \vec{v}_n) \\ [T]_{SS} = \left( [T(\vec{e}_1)]_S \ \cdots \ [T(\vec{e}_n)]_S \right) = (\text{first column of } A \ \cdots \ n \text{th column of } A) = A \\ [T]_{BB} = \left( [T(\vec{v}_1)]_B, \dots, [T(\vec{v}_n)]_B \right) = \left( [\lambda_1 \vec{v}_1]_{BB} \ \cdots \ [\lambda_n \vec{v}_n]_B \right) = \begin{pmatrix} \lambda_1 & 0 \\ \ddots & 0 & \lambda_n \end{pmatrix} \\ A = [T]_{\mathbb{S}} = [I]_{SB} [T]_{\mathbb{B}} [I]_{SB} = (\vec{v}_1 \ \cdots \ \vec{v}_n) \begin{pmatrix} \lambda_1 & 0 \\ \ddots & 0 & \lambda_n \end{pmatrix} (\vec{v}_1 \ \cdots \ \vec{v}_n)^{-1} \\ 0 & \lambda_n \end{pmatrix}$$

### **Example**

Diagonalize  $A=\begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix}$ . Use that to find  $A^n \forall n \in \mathbb{Z}^+$ .

## **Solution**

$$\det(A-zI) = \begin{pmatrix} 2-z & -3 \\ -4 & 1-z \end{pmatrix} = (2-z)(1-z) - 12 = (z-5)(z+2) \Rightarrow \text{ eigenvalues are } \{5,-2\}$$
 
$$For \ z=5:$$
 
$$A-5I = \begin{pmatrix} -3 & -3 \\ -4 & -4 \end{pmatrix} \Rightarrow \vec{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ is an eigenvector}$$
 
$$For \ z=3:$$
 
$$A-5I = \begin{pmatrix} 4 & -3 \\ -4 & 3 \end{pmatrix} \Rightarrow \vec{v}_2 = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \text{ is an eigenvector}$$
 
$$\left(5, \begin{pmatrix} 1 \\ -1 \end{pmatrix}\right), \begin{pmatrix} -2, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right) \text{ are eigenpairs. } \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 3 \\ 4 \end{pmatrix} \text{ are not scalar multiples } \therefore \text{ linear independent}$$
 
$$\dim \mathbb{F}^2 = 2 \div \vec{v}_1, \vec{v}_2 \text{ form a basis for } \mathbb{F}^2$$
 By a theorem, 
$$A = PDP^{-1} = \begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix}^{-1}$$
 
$$A = PDP^{-1}$$
 
$$A^2 = PDP^{-1}PDP^{-1} = PDDP^{-1} = PD^2P^{-1}$$
 
$$A^3 = PDP^{-1}PDP^{-1}PDP^{-1} = PDDP^{-1} = PD^3P^{-1}$$
 
$$\vdots$$
 
$$A^n = PD^nP^{-1} = \begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 5^n & 0 \\ 0 & (-2)^n \end{pmatrix} \begin{pmatrix} \frac{4}{7} - \frac{3}{7} \\ \frac{1}{7} & \frac{1}{7} \end{pmatrix}$$

#### **Example**

Show  $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$  is not diagonalizable.

#### Solution

$$\begin{split} \det(A-zI) &= \det \begin{pmatrix} 1-z & 2 \\ 0 & 1-z \end{pmatrix} = (1-z)^2 : \text{eigenvalues are } 1,1 \\ \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} &= \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow y = 0. \text{ then eigenvectors } \begin{pmatrix} x \\ 0 \end{pmatrix}, x \neq 0, x \in \mathbb{F} \\ &\therefore \text{ no basis of } \mathbb{F}^2 \text{ consisting of eigenvalues} \end{split}$$

# Similar Matrices and Characteristic Polynomial Theorem

Every two similar matrices have the same characteristic polynomial.

#### **Proof**

Suppose 
$$A,B$$
 are similar. By definition,  $\exists P,A=PBP^{-1}$ . 
$$\det(A-zI)=\det(PBP^{-1}-zI)=\det(P(B-zI)P^{-1})$$
 
$$=\det(P)\det(B-zI)\det(P^{-1})=\det(P)\det(P^{-1})\det(B-zI)=\det(PP^{-1})\det(B-zI)$$
 
$$=\det(I)\det(B-zI)=\det(B-zI)$$

# Distinct Eigenvalues lead to <u>linearly independent</u> Eigenvectors

Eigenvectors corresponding to distinct eigenvalues are <u>linearly independent</u>. Furthermore, if an  $n \times n$  matrix has n distinct eigenvalues, then it is diagonalizable.

#### **Proof**

Suppose  $(\lambda_1, \vec{v}_1), ..., (\lambda_m, \overrightarrow{v_m})$  are eigenpairs corresponding to a matrix A (or a linear transformation T) with  $\lambda_1, ..., \lambda_m$  distinct. We will prove  $\vec{v}_1, ..., \vec{v}_m$  are <u>linearly independent</u> by induction on m.

Base case: m=1:

Since  $\vec{v}_1 \neq \vec{0}$ , it is <u>linearly independent</u>.

Inductive Hypothesis: Assume  $\vec{v}_1,...,\overrightarrow{v_{m-1}}$  are <u>linearly independent</u>.

Inductive Step: Prove  $\vec{v}_1,...,\overrightarrow{v_m}$  are <u>linearly independent</u>.

$$\begin{array}{c} \operatorname{Assume} \ \mathbb{c}_1 \vec{v}_1 + \cdots + \mathbb{c}_m \overrightarrow{v_m} = \vec{0} \ \text{for some} \ \mathbb{c}_1, \ldots, \mathbb{c}_m \in \mathbb{F}. \\ \mathbb{c}_1 A \vec{v}_1 + \cdots + \mathbb{c}_{m-1} A \overrightarrow{v_{m-1}} + \mathbb{c}_m A \overrightarrow{v_m} = A \vec{0} = \vec{0} \qquad (*) \\ \mathbb{c}_1 \lambda_1 \vec{v}_1 + \cdots + \mathbb{c}_{m-1} \lambda_{m-1} \overrightarrow{v_{m-1}} + \mathbb{c}_m \lambda_m \overrightarrow{v_m} = \vec{0} \qquad (**) \\ \mathbb{c}_1 \lambda_1 \vec{v}_1 + \cdots + \mathbb{c}_{m-1} \lambda_{m-1} \overrightarrow{v_{m-1}} + \mathbb{c}_m \lambda_m \overrightarrow{v_m} = \vec{0} \\ \lambda_m (*) - (**) \ \text{yields} \ \mathbb{c}_1 (\lambda_m - \lambda_1) \vec{v}_1 + \cdots + \mathbb{c}_{m-1} (\lambda_m - \lambda_{m-1}) \overrightarrow{v_{m-1}} = \vec{0} \\ \text{By the I.H.} \ \mathbb{c}_1 (\lambda_m - \lambda_1) = \cdots = \mathbb{c}_{m-1} (\lambda_m - \lambda_{m-1}) = 0 \\ \text{Since} \ \lambda_m \neq \lambda_1, \ldots, \lambda_m \neq \lambda_{m-1}, \mathbb{c}_1 = \cdots = c_{m-1} = 0 \Rightarrow \mathbb{c}_m = 0 \\ \mathbb{c}_* \end{array}$$

# **Exponentiating Matrix**

$$A \in M_n(\mathbb{F})$$

We want to define  $e^A$ .

By the Taylor series:

$$e^A=\sum_{k=0}^\infty\frac{A^k}{k!}=I+\frac{A}{1!}+\frac{A^2}{2!}+\cdots$$
 Then if  $A=P\begin{pmatrix}\lambda_1&0\\&\ddots\\0&\lambda_n\end{pmatrix}P^{-1}$  then  $e^A=P\begin{pmatrix}e^{\lambda_1}&0\\&\ddots\\0&e^{\lambda_n}\end{pmatrix}P^{-1}.$ 

#### **Proof for Diagonalizable Matrices**

$$\text{Suppose } D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix}$$
 
$$e^D = \sum_{k=0}^{\infty} \frac{D^k}{k!} = \sum_{k=0}^{\infty} \frac{\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix}^k}{k!} = \begin{pmatrix} \sum_{k=0}^{\infty} \frac{\lambda_1^k}{k!} & 0 \\ & \ddots & \\ 0 & \sum_{k=0}^{\infty} \frac{\lambda_n^k}{k!} \end{pmatrix} = \begin{pmatrix} e_1^{\lambda} & 0 \\ & \ddots & \\ 0 & e_n^{\lambda} \end{pmatrix}$$

$$\begin{aligned} \text{Suppose } A &= PDP^{-1} \\ e^A &= \sum_{k=0}^\infty \frac{\left(PDP^{-1}\right)^k}{k!} = \sum_{k=0}^\infty \frac{PD^kP^{-1}}{k!} = P\left(\sum_{k=0}^\infty \frac{D^k}{k!}\right)P^{-1} = P\begin{pmatrix} e^{\lambda_1} & 0 \\ 0 & e^{\lambda_n} \end{pmatrix}P^{-1} \\ & \therefore \text{ If } A = P\begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}P^{-1} \text{ then } e^A = P\begin{pmatrix} e^{\lambda_1} & 0 \\ & \ddots \\ 0 & e^{\lambda_n} \end{pmatrix}P^{-1} \end{aligned}$$

### Why we may want this:

$$y(t) = e^{t}$$
 
$$\begin{cases} y' = y \\ y(0) = 1 \end{cases} \begin{cases} \frac{d(e^{tA})}{dt} = Ae^{tA} \\ e^{tA} \mid_{t=0} = I \end{cases}$$

### **Example**

Evaluate  $e^A$  where  $A = \begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix}$ .

#### Solution

We previously did this, therefore:

$$A = \begin{pmatrix} 3 & -1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} -2 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ 4 & 1 \end{pmatrix}^{-1}$$
$$e^{A} = \begin{pmatrix} 3 & -1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} e^{-2} & 0 \\ 0 & e^{5} \end{pmatrix} \begin{pmatrix} 3 & -1 \\ 4 & 1 \end{pmatrix}^{-1}$$

# **Fundamental Theorem of Algebra**

Every polynomial of degree n with complex coefficients can be completely factored into linear terms.

In other words, if  $p(t)=a_nt^n+\cdots+a_1t+a_0$  with  $a_j\in\mathbb{C}$  and  $a_n\neq 0$ , then  $p(t)=a_n(t-\mathbb{c}_1)\cdots(t-\mathbb{c}_n)$  for some  $\mathbb{c}_j\in\mathbb{C}$ .

# **Upper and Lower Triangular**

A square matrix is called upper triangular if every (j,k) entry with j>k is zero.

A square matrix is called lower triangular if every (i, k) entry with i < k is zero.

# **Chapter 3: Jordan Form**

# **Block Multiplication of Matrices**

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

For every two block matrices, as long as all matrix operations are valid. A similar result holds for all other block matrices.

### **Theorem: Schur's Theorem**

Every square matrix in  $M_{n(\mathbb{C})}$  is similar to an upper triangular matrix.

#### **Proof**

Induction on n:

Let  $A \in M_n(\mathbb{C})$ .

Base case n = 1: A is already upper triangular.

Inductive Hypothesis: Assume the result holds for matrices in  $M_{n-1}(\mathbb{C}), 1 \leq n-1 \leq n$ 

**Inductive Step:** 

Let  $\lambda_1\in\mathbb{C}$  be a root of the characteristic polynomial of A. Let  $\vec{v}_1\in\mathbb{C}^n$  be an eigenvector corresponding to  $\lambda_1$ . Let  $B=(\vec{v}_1,...,\vec{v}_n)$  be an ordered basis for  $\mathbb{C}^n$ . Define  $T:\mathbb{C}^n\to\mathbb{C}^n, T(\vec{x})=A\vec{x}$ . Let  $S=(\vec{e_1},...,\vec{e_n})$ 

$$\begin{split} \left[T\right]_{SS} &= A \text{ by a theorem} \\ \left[T\right]_{BB} &= \left(\left[T(\vec{v}_1)\right]_B \ \cdots\right) = \left(\left[A\vec{v}_1\right]_B \ \cdots\right) = \left(\left[\lambda_1\vec{v}_1\right] \ \cdots\right) = \begin{pmatrix} \lambda_1 \\ 0 \ * \end{pmatrix} \\ A \text{ is similar to } \begin{pmatrix} \lambda_1 \\ 0 \ * \end{pmatrix} \text{ by a theorem} \\ A &= P\begin{pmatrix} \lambda_1 & V \\ 0 & B \end{pmatrix} P^{-1}, B \in M_{n-1}(\mathbb{C}), V \in M_{1\times(n-1)}(\mathbb{C}) \end{split}$$

By the inductive hypothesis,  $B = QCQ^{-1}$  where C is upper triangular

$$A = P \begin{pmatrix} \lambda_1 & V \\ 0 & QCQ^{-1} \end{pmatrix} P^{-1}$$

$$A = P \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} \underbrace{\begin{pmatrix} \lambda_1 & W \\ 0 & C \end{pmatrix}}_{\text{upper triangular}} \begin{pmatrix} 1 & 0 \\ 0 & Q^{-1} \end{pmatrix} P^{-1}$$

$$\begin{pmatrix} \lambda_1 & W \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} \underbrace{\begin{pmatrix} \lambda_1 & WQ^{-1} \\ 0 & Q \end{pmatrix}}_{\text{upper triangular}} \begin{pmatrix} \lambda_1 & WQ^{-1} \\ 0 & Q \end{pmatrix}$$

$$\begin{pmatrix} \lambda_1 & W \\ 0 & QC \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Q^{-1} \end{pmatrix} = \begin{pmatrix} \lambda_1 & WQ^{-1} \\ 0 & QCQ^{-1} \end{pmatrix}$$

We need  $WQ^{-1} = V \iff W = VQ$ 

Plug in and get the upper triangular matrix

## **Example**

Write the following matrix as  $PTP^{-1}$ , where T is upper triangular.

$$A = \begin{pmatrix} 0 & 0 & -1 \\ 5 & 2 & 3 \\ 2 & 0 & 3 \end{pmatrix}$$

#### Solution

$$\det(A-zI) = \det\begin{pmatrix} -z & 0 & -1 \\ 5 & 2-z & 3 \\ 2 & 0 & 3-z \end{pmatrix}$$
 
$$(-1)^{2+2}(2-z)(-z(3-z)+2) = (2-z)\big(z^2-3z+2\big) = (2-z)(z-1)(z-2)$$

Find an eigenpair  $(1, \vec{v}_1)$ . Extend to a basis to obtain  $\vec{v}_2, \vec{v}_3$ , then follow the proof

## **Recall: Existence of Upper Triangular Matrix**

If  $A \in M_n(\mathbb{C})$ , then  $a = PTP^{-1}$  for some upper triangular matrix T.

### Example:

Give an example of a  $M_n(\mathbb{R})$  matrix that is not similar to an upper triangular matrix in  $M_n(\mathbb{R})$ .

#### Solution

Rotation matrix:

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Eigenvalues are  $\pm i$ . If  $A=P{\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}}P^{-1}$  then  $\lambda_1,\lambda_2=\pm i$  since similar matrices have the same characteristic polynomial, thus the same eigenvalues.

## Definition: matrix input into a polynomial

Let  $A\in M_n(\mathbb{F})$  and  $P(A)=a_0I+a_1A+\cdots+a_mA.^m$  be a polynomial with  $a_j\in\mathbb{F}$ .

# Cayley-Hamilton theorem matrix

Let p(z) be the characteristic polynomial of a matrix  $A \in M_n(\mathbb{F})$ . Then p(A) = 0. To evaluate P(A), first evaluate  $\det(A - zI)$ , then substitute z = A.

#### **Proof**

By Schur's Theorem, there is an invertible matrix  $S\in M_n(\mathbb{C})$  and an upper triangular matrix  $T\in M_n(\mathbb{C})$  such that  $A=STS^{-1}$ . By a theorem, the characteristic polynomial of T is also p(z).

 $\text{Assume } p(z) = a_0 + \dots + a_n z^n.$ 

$$\begin{split} P(A) &= a_0 I + a_1 A + \dots + a_n A^n \\ &= a_0 I + a_1 P T S^{-1} + \dots + a_n P T^n S^{-1} \\ &= S(p(T)) S^{-1} \end{split}$$

We need to show p(T) = 0.

Base case n=1.

$$T=(\lambda_1), p(z)=\lambda_1-z, P(T)=\lambda_1I-(\lambda_1)=0$$

**Inductive Step:** 

Now, we will prove the theorem for upper triangular matrices by induction on n.

$$T = \begin{pmatrix} \lambda_1 & * \\ 0 & \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda_1 & * \\ 0 & B \end{pmatrix}, B = \begin{pmatrix} \lambda_2 & * \\ 0 & \lambda_n \end{pmatrix} \in M_{n-1}(\mathbb{C})$$
 Eigenvalues of  $T$  are  $\lambda_1, \dots, \lambda_n \Rightarrow p(z) = \det(T - zI) = (\lambda_1 - z) \cdots (\lambda_n - z)$  
$$q(z) = \det(B - zI) = (\lambda_2 - z) \cdots (\lambda_n - z)$$
 
$$\therefore p(z) = (\lambda_1 - z)q(z)P(T) = (\lambda_1 I - T)Q(T) = \begin{pmatrix} 0 & * \\ \lambda_1 - \lambda_2 & \\ 0 & \lambda_1 - \lambda_n \end{pmatrix} \begin{pmatrix} q(\lambda_1) & * \\ 0 & 0 \\ 0 & \text{By I.H.} \end{pmatrix} = \begin{pmatrix} 0 & \\ \text{first column } 0 \times \text{ second and on rows zero} \end{pmatrix}$$

# **Jordan Canonical Form**

Objective: Write every matrix

$$A = P \begin{pmatrix} B_1 & 0 \\ & \ddots & \\ 0 & B_m \end{pmatrix} P^{-1}$$
 
$$B_j = \begin{pmatrix} \lambda_1 & 1 & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & \lambda_j \end{pmatrix}$$

Each  $B_i$  is called a Jordan block.

#### **Example**

Consider 
$$A = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

a. Find all eigenpairs of A. Show A is not diagonalizable.

All eigenvalues are 2 because this matrix is diagonal, and those are along the diagonal.

$$\mathrm{Ker}\ (A-2I) = \mathrm{Span}\ \{\vec{e_1},\vec{e_2}\}$$

$$\mathsf{Eigenpairs} = \left(2, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}\right), \left(2, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}\right)$$

Since  $\dim \operatorname{Ker}\ (A-2I)=2 \neq 4$  there is no basis of  $\mathbb{F}^4$  of eigenvectors.  $\therefore$  A is not diagonalizable.

b. Find a basis for  $\operatorname{Ker}\left(\left(A-2I\right)^{2}\right)$ 

$$(A-2I)^2 = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 Ker  $((A-2I)^2)$  = Span  $\{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$ 

c. Find a basis for  $\operatorname{Ker}\ ((A-2I)^n) \forall n \in \mathbb{Z}^+$ 

$$(A-2I)^3 = 0 \Rightarrow \text{Ker } (A-2I)^3 = \mathbb{F}^4$$
  
\(\therefore\) a basis for \text{Ker }  $((A-2I)^n) = \{\vec{e_1}, \vec{e_2}, \vec{e_3}, \vec{e_4}\} \forall n \in \mathbb{Z}^{z \geq 3}$ 

d. Find A in an "almost diagonal form".

$$A = P \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix} P^{-1} \Rightarrow$$

$$\begin{cases} T(\vec{v}_1) = 2\vec{v}_1 \\ T(\vec{v}_2) = 2\vec{v}_2 \\ T(\vec{v}_3) = \vec{v}_2 + 2\vec{v}_3 \Rightarrow (A - 2I)v_3 = v_2 \\ T(\vec{v}_3) = \vec{v}_3 + 2\vec{v}_4 \Rightarrow (A - 2I)v_4 = v_4 \end{cases}$$

Start with a vector in  ${\rm Ker}\ (A-2I)^3$  that is not in  ${\rm Ker}\ (A-2I)^2$ . Call that  $\vec{v}_4:\vec{v}_4=\vec{e_4}$ . Set  $\vec{v}_3=(A-2I)\vec{v}_4=2\vec{e_3}$ 

$$\begin{split} \vec{v}_2 &= (A-2I) \vec{v}_3 = 2 \vec{e_1} - 2 \vec{e_2} \\ &(A-2I) \vec{v}_2 = \vec{0} \\ \text{To summarize: } \begin{cases} A \vec{v}_2 &= 2 \vec{v}_2 \\ A \vec{v}_3 &= \vec{v}_2 + 2 \vec{v}_3 \\ A \vec{v}_4 &= \vec{v}_3 + 2 \vec{v}_4 \end{cases} \\ & \therefore \vec{v}_2 = \begin{pmatrix} 2 \\ -2 \\ 0 \\ 0 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \vec{v}_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \end{split}$$
 Choose  $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$  Set  $\mathcal{B} = (\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4)$  a basis for  $\mathbb{F}^4$ 

$$\begin{aligned} & \text{Consider } T: \mathbb{F}^4 \to \mathbb{F}^4 \text{ by } T(\vec{x}) = A\vec{x} \\ & \left[T\right]_{SS} = A, S = (\vec{e_1}, \vec{e_2}, \vec{e_3}, \vec{e_4}) \\ & \left[T\right]_{\mathcal{BB}} = \left(\left[T(\vec{v_1})\right]_{\mathcal{B}} \ \left[T(\vec{v_2})\right]_{\mathcal{B}} \ \left[T(\vec{v_3})\right]_{\mathcal{B}} \ \left[T(\vec{v_4})\right]_{\mathcal{B}}\right) \\ & = \left(\left[2\vec{v_1}\right]_{B} \ \left[2\vec{v_2}\right]_{B} \ \left[\vec{v_2} + 2\vec{v_3}\right]_{B} \ \left[\vec{v_4} + 2\vec{v_4}\right]_{B}\right) = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \\ & \left[T\right]_{SS} = \left[I\right]_{SB} \left[T\right]_{BB} \left[I\right]_{SB}^{-1} = \underbrace{\begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{P} \underbrace{\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}}_{P^{-1}} \Box \end{aligned}$$

## Theorem: Steady state kernel space

Let  $\lambda$  be an eigenvalue of an  $n \times n$  matrix A. Then,  $\exists k \leq n$  such that

$$\operatorname{Ker}(A-\lambda I) \subsetneq \operatorname{Ker}\left(A-\lambda I\right)^2 \subsetneq \cdots \subsetneq \operatorname{Ker}(A-\lambda I)^k = \operatorname{Ker}(A-\lambda I)^{k+1} = \cdots$$

# **Generalized Eigenvector**

For an eigenvalue  $\lambda$ ,  $A\in M_n(\mathbb{F})$ , every nonzero vector in  $\mathrm{Ker}\ (A-\lambda I)^n$  is called a generalized eigenvector. The vector space  $\mathrm{Ker}\ (A-\lambda I)^n$  is called the generalized eigenspace associated to  $\lambda$ .

# Theorem: <u>linearly independent</u> generalized eigenvectors

Generalized eigenvectors corresponding to distinct eigenvalues are linearly independent.

# The dimension of the generalized eigenspace

The dimension of the generalized eigenspace corresponding to an eigenvalue  $\lambda$  is the same as the multiplicity of  $\lambda$  as a root of character polynomials.

#### **Existence of Jordan Canonical Form**

Every matrix  $A\in M_n(\mathbb{C})$  has a Jordan Decomposition. Furthermore, this matrix in Jordan form is unique up to permutations of Jordan blocks.

In other words:

$$A=PJP^{-1};J=\begin{pmatrix}B_1&0\\&\ddots\\0&B_m\end{pmatrix};B_j=\begin{pmatrix}\lambda_j&1&0\\&\ddots&\ddots\\&&\ddots&1\\0&&\lambda_j\end{pmatrix}$$

### **Example**

Find a matrix in Jordan form that is similar to

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 5 & -1 \\ -4 & 13 & -2 \end{pmatrix}$$

Find P such that  $A = PJP^{-1}$  where J is in Jordan form

#### Solution

$$\det(A-ZI) = -z^3 + 5z^2 - 8z + 4 \underbrace{=}_{\text{rational root \& long division}} (z-1)(-z+2)(z-2) \div \text{ eigenvalues are } 1,2,2$$
 
$$\text{Ker } (A-1I) = \text{Span } \left\{ \begin{pmatrix} 1\\1\\3 \end{pmatrix} \right\} \qquad 1 = 1, \text{ we are done}$$
 
$$\text{Ker } (A-2I) = \text{Span } \left\{ \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\} \qquad 1 \neq 2, \text{ we must continue}$$
 
$$\text{Ker } (A-2I)^2 = \text{Span } \left\{ \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 3\\1\\0 \end{pmatrix} \right\}, \qquad 2 = 2, \text{ we are done}$$
 
$$A-2I = \begin{pmatrix} 0 & -1 & 0\\-1 & 3 & -1\\-4 & 13 & -4 \end{pmatrix}$$
 
$$\vec{v}_1 = \begin{pmatrix} 1\\1\\2 \end{pmatrix}, A\vec{v}_1 = \vec{v}_1 \text{ since eigenvector}$$

Choose a vector in  $Ker(A-2I)^2$  that is not in the previous one.

$$\vec{v}_{3} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}, \vec{v}_{2} = (A - 2I)\vec{v}_{3} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{cases} A\vec{v}_{3} = \vec{v}_{2} + 2\vec{v}_{3} \text{ from } \vec{v}_{2} = (A - 2I)\vec{v}_{3} \\ A\vec{v}_{2} = 2\vec{v}_{2} \text{ by eigenvector} \end{cases}$$

$$\mathcal{B} = (\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3})$$

$$\vec{A} = \underbrace{\begin{pmatrix} I \\ 0 \\ 1 \end{pmatrix}}_{P} \underbrace{\begin{pmatrix} I \\ 0 \\ 1 \end{pmatrix}}_{Q} \underbrace{\begin{pmatrix} I \\ 0 \\ 0 \\ 2 \end{pmatrix}}_{Q} \underbrace{\begin{pmatrix} I \\ -1 \\ 3 \end{pmatrix}}_{Q} \underbrace{\begin{pmatrix} I \\ -1 \\ 3 \end{pmatrix}}_{Q} \underbrace{\begin{pmatrix} I \\ 0 \\ 1 \end{pmatrix}}_{Q} \underbrace{\begin{pmatrix} I \\ 0 \\ 0 \end{pmatrix}}_{Q} \underbrace{\begin{pmatrix} I \\ 0 \\ 1 \end{pmatrix}}_{Q} \underbrace{\begin{pmatrix} I \\ 0 \\ 1$$

#### **Motivation for exponentiating**

$$\begin{split} A\vec{v}_1 &= \lambda\vec{v}_1 \Rightarrow (A-\lambda I)\vec{v}_1 = \vec{0} \\ A\vec{v}_2 &= \vec{v}_1 + \lambda\vec{v}_2 \Rightarrow (A-\lambda I)\vec{v}_2 = \vec{v}_1 \Rightarrow (A-\lambda I)(A-\lambda I)\vec{v}_2 = (A-\lambda I)\vec{v}_1 \Rightarrow (A-\lambda I)^2\vec{v}_2 = \vec{0} \end{split}$$

#### **Example**

How many  $5 \times 5$  nonsimilar matrices in Jordan form are there all of those whose eigenvalues are zero?

#### Solution

One block:  $5 \times 5$  (1)

Two blocks:  $1 \times 1 \wedge 4 \times 4 \vee 2 \times 2 \wedge 3 \times 3$  (2)

Three blocks:  $1 \times 1 \wedge 1 \times 1 \wedge 3 \times 3 \vee 1 \times 1 \wedge 2 \times 2 \wedge 2 \times 2$  (2)

Four blocks:  $1 \times 1 \wedge 1 \times 1 \wedge 1 \times 1 \wedge 2 \times 2$  (1)

Five blocks:  $1 \times 1 \wedge 1 \times 1 \wedge 1 \times 1 \wedge 1 \times 1 \wedge 1 \times 1$  (1)

So 7 in total.

#### Example

Find the number of nonsimilar  $6 \times 6$  matrices in Jordan form whose eigenvalues are 1, 2, 2, 3, 3, 3.

#### Solution

For 1, 1 possibility (1  $\times$  1). For 2, 2 possibilities (1  $\times$  1  $\wedge$  1  $\times$  1  $\vee$  2  $\times$  2. For 3, 3 possibilities (1  $\times$  1  $\wedge$  1  $\times$  1  $\wedge$  1  $\times$  1  $\wedge$  1  $\times$  1  $\wedge$  2  $\times$  2  $\vee$  3  $\times$  3).

In total,  $1 \times 2 \times 3 = 6$ 

## Theorem: Finding J

Let  $J\in M_n(\mathbb{C})$  and J be a matrix in Jordan form that is similar to A. Then, for every  $k\in\mathbb{Z}^+$ , the number of Jordan blocks of J with size at least  $k\times k$  corresponding to an eigenvalue  $\lambda$  is  $\dim \mathrm{Ker}(A-\lambda I)^k-\dim \mathrm{Ker}(A-\lambda I)^{k-1}$ . Here  $(A-\lambda I)^0=I$ 

### **Example**

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$\begin{cases} \dim \operatorname{Ker}\ (A-2I) = 2 \\ \dim \operatorname{Ker}\ (A-2I)^0 = 0 \end{cases} \to \operatorname{There}\ \operatorname{are}\ 2-0\ \operatorname{Jordan}\ \operatorname{blocks}\ \operatorname{of}\ \operatorname{size}\ 1\times 1\ \operatorname{or}\ \operatorname{more}$$

$$\dim \operatorname{Ker} \ (A-2I)^2 = \dim \operatorname{Ker} \ \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = 3 \div 3 - 2 = 1 \text{ block is bigger than } 2 \times 2$$

#### **Example**

The character polynomial of a matrix A is  $p(z) = z^6(z-1)^4$ . Suppose  $\dim \operatorname{Ker} A = 1$  and  $\dim \operatorname{Ker} (A-I) = 3$ . Find a matrix in Jordan form that is similar to A.

#### Solution

For an eigenvalue of 0, we know there is a multiplicity of 6.

Because  $\dim {
m Ker}\ (A-0I)-\dim {
m Ker}\ (A-0I)^0=1-0=1$ . Therefore, there is one Jordan block. Since the multiplicity is 6, this Jordan block is  $6\times 6$ 

For an eigenvalue of 1, we know there is a multiplicity of 4. Because  $\dim \operatorname{Ker} (A-1I) - \dim \operatorname{Ker} (A-1I)^0 = 3-0 = 3$ . Therefore, there are 3 Jordan blocks. Since the multiplicity is 4, they have sizes  $2 \times 2$ ,  $1 \times 1$ , and  $1 \times 1$ .

# **Nilpotent**

For a matrix  $A \in M_n(\mathbb{F})$ ,  $\exists k A^k = 0$ 

# **Applications of Jordan Form**

$$A = P \begin{pmatrix} B_1 & 0 \\ \ddots & \\ 0 & B_m \end{pmatrix} P^{-1}; A \in M_n(\mathbb{C})$$
 
$$B_j = \begin{pmatrix} \lambda_j & 1 & 0 \\ \ddots & \ddots & \\ & \ddots & 1 \\ 0 & \lambda_j \end{pmatrix} = \begin{pmatrix} \lambda_j & 0 \\ & \ddots & \\ & \ddots & 1 \\ 0 & \lambda_j \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ & \ddots & \ddots & \\ & \ddots & 1 \\ 0 & 0 \end{pmatrix} = \lambda_j I + N_j$$
 
$$N_j \vec{e_1} = \vec{0}, \dots, N_j \vec{e_k} = \overrightarrow{e_{k-1}} \therefore N_j^k = 0 \therefore N_j \text{ is nilpotent.}$$
 
$$A = P \begin{pmatrix} \lambda_1 I & 0 \\ & \ddots & \\ & 0 & \lambda_m I \end{pmatrix} P^{-1} + P \begin{pmatrix} N_1 & 0 \\ & \ddots & \\ & 0 & N_m \end{pmatrix} P^{-1}$$
 Diagonalizable Nilpotent

For every  $A\in M_n(\mathbb{C})$ , there are matrices  $D,N\in M_n(\mathbb{C})$  such that.

- 1. A = D + N
- 2. D is diagonalizable.
- 3. N is nilpotent
- 4. ND = DN

# **Overall Objective**

$$e^A = \sum_{m=0}^{\infty} \frac{A^m}{m!}$$

Show that  $e^A$  converges  $\forall A \in M_n(\mathbb{C})$ 

A = D + N

# **Analytic function**

A function  $f: \mathbb{R} \to \mathbb{R}$  is called analytic if

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \ \forall x \in \mathbb{R}$$
 
$$a_n = \frac{f^{(n)}(0)}{n!}$$

# Theorem: analytic over reals to convergent over the complex

If  $\sum_{n=0}^{\infty}a_nx^n$  converges  $\forall x\in\mathbb{R}$ , then  $\sum_{n=0}^{\infty}a_nz^n=0$  converges  $\forall z\in\mathbb{C}$ .

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \forall z \in \mathbb{C}$$
 if  $f$  is analytic

# Theorem: analytic function of a diagonalizable matrix

If  $A=Sinom{\lambda_1 & 0}{0 & \lambda_n}S^{-1}$ , and f is analytic, then

$$f(A) = S \begin{pmatrix} f(\lambda_1) & 0 \\ & \ddots & \\ 0 & f(\lambda_n) \end{pmatrix} S^{-1}$$

**Proof** 

$$\operatorname{Suppose} A = S \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ & 0 & \lambda_n \end{pmatrix} S^{-1}$$
 
$$f(A) = \sum_{m=0}^{\infty} a_m \left( S \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ & 0 & \lambda_n \end{pmatrix} S^{-1} \right)^m = \sum_{m=0}^{\infty} a_m S \begin{pmatrix} \lambda_1^m & 0 \\ & \ddots \\ & 0 & \lambda_n^m \end{pmatrix} S^{-1}$$
 
$$\operatorname{Partial sum} : P_k(A) = \sum_{m=0}^k a_m S \begin{pmatrix} \lambda_1^m & 0 \\ & \ddots \\ & 0 & \lambda_n^m \end{pmatrix} S^{-1} = S \left( \sum_{m=0}^k a_m \begin{pmatrix} \lambda_1^m & 0 \\ & \ddots \\ & 0 & \lambda_n^m \end{pmatrix} \right) S^{-1} = S \begin{pmatrix} \sum_{m=0}^k a_m \lambda_1^m & 0 \\ & \ddots \\ & 0 & \sum_{m=0}^k a_m \lambda_n^m \end{pmatrix} S^{-1}$$
 
$$f(A) = \lim_{k \to \infty} P_k(A) = \lim_{k \to \infty} S \begin{pmatrix} \sum_{m=0}^k a_m \lambda_1^m & 0 \\ & \ddots \\ & 0 & \sum_{m=0}^k a_m \lambda_n^m \end{pmatrix} S^{-1} = S \begin{pmatrix} f(\lambda_1) & 0 \\ & \ddots \\ & 0 & f(\lambda_n) \end{pmatrix} S^{-1}$$

# Theorem: analytic function of a diagonalizable matirx.

$$f(A)$$
 converges  $\forall A \in M_n(\mathbb{C})$ 

**Proof** 

$$A = D + N$$
 
$$P_k(x) = \sum_{m=0}^k a_m x^m$$

Since  $DN = ND, x_0 = D, h = N$  to obtain:

$$P_k(D+N) = \sum_{m=0}^{\infty} \frac{P_k^{(m)}(D)}{m!} N^m.$$

Suppose  $N^l = 0$ , which is true for some l because N is nilpotent.

$$P_k(A) = \sum_{m=0}^{l-1} \frac{P_k^{(m)}(D)}{m!} N^m.$$

Note D is diagonalizable ::  $\lim_{k\to\infty}P_k(D)=f(D)\wedge\lim_{k\to\infty}P_k^{(m)}(D)=f^{(m)}(D)$ 

$$\therefore f(A) = \sum_{m=0}^{l-1} \frac{f^{(m)}(D)}{m!} N^m$$

## **Example**

If  $f(x) = e^x$ , then

$$e^{A} = \sum_{m=0}^{l-1} \frac{e^{D}}{m!} N^{m}$$

$$e^{A} = e^{D} \sum_{m=0}^{l-1} \frac{1}{m!} N^{m}$$

$$e^{A} = e^{D} e^{N}$$

### **Example**

Evaluate  $e^A$  and  $\sin(B)$  where  $A=\begin{pmatrix}1&1\\0&1\end{pmatrix}, B=\begin{pmatrix}1&1\\3&-1\end{pmatrix}$ .

#### Solution

Jordan Decomposition:

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, N^2 = 0$$

$$e^A = e^D \sum_{m=0}^{1} \frac{N^m}{m!} = \begin{pmatrix} e & 0 \\ 0 & e \end{pmatrix} (I + N) = \begin{pmatrix} e & e \\ 0 & e \end{pmatrix}$$

For sin(B):

$$\det(B-zI) = (1-z)(-1-z) - 1 \cdot 3 = z^2 - 4 \Rightarrow z = \pm 2$$

$$z = 2 : \begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow x = y \Rightarrow \begin{pmatrix} 2, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} \text{ is an eigenpair}$$

$$z = -2 : \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow y = -3x \Rightarrow \begin{pmatrix} -2, \begin{pmatrix} 1 \\ -3 \end{pmatrix} \end{pmatrix} \text{ is an eigenpair}$$

$$B = \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix}^{-1}$$

$$\sin(B) = \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} \sin 2 & 0 \\ 0 & \sin(-2) \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix}^{-1}$$

# **Chapter 4: Ordinary Differential Equations**

# **Definition of Differential Equation**

An equation involving derivatives.

## **Definition of Ordinary Differential Equation**

Equations involving only single-variable derivatives (not partial).

### **Example**

$$\begin{split} &\frac{d^2x}{dt^2}y + yx^2\frac{dy}{dt} = t^2 + 3t - e^{t\sin t}: \text{ODE of order 2} \\ &\left(\frac{\partial x}{\partial t}\right)^3x(t,s) + ts - \sin t = x(t,s): \text{PDE of order 1} \end{split}$$

# **Definition of Partial Differential Equations**

Equations involving partial derivatives.

#### **Definition of Order**

The highest derivative that appears in the differential equation.

#### Goals

- 1. Can we find a general solution to the differential equation?
- 2. Given initial values, is there a solution? If so, how many?
- 3. Can we approximate solutions given some initial values?
- 4. What are constant solutions?
- 5. What are periodic solutions?
- 6. What are bounded solutions?
- 7. Are all solutions bounded?
- 8. Are all solutions periodic?
- 9. Are all solutions odd?
- 10. Are all solutions even?
- 11. How do solutions change when initial values change?

# **Definition of Explicit Differential equations**

Any differential equation of the form  $\frac{dy}{dt} = f(t)$  is called an explicit differential equation.

## **Example**

Find a general solution to  $\frac{dy}{dt} = \frac{1}{t^2 - t}$ .

$$\frac{1}{t^2-t} = \frac{1}{t(t-1)} = -\frac{1}{t} + \frac{1}{t-1}$$
 
$$\int \frac{1}{t-1} - \frac{1}{t} dt = \log(t-1) - \log(t) + \mathbf{c}_1 = \log\left(\frac{t-1}{t}\right) + \mathbf{c}_1, \mathbf{c}_1 \in \mathbb{C}$$

y is differential over (0,1) and  $y(\frac{1}{2})=5$  becomes

$$\log\left(\frac{\frac{1}{2}-1}{\frac{1}{2}}\right) + \mathbb{c}_1 = 5 \Rightarrow \log(-1) + \mathbb{c}_1 = 5 \Rightarrow \mathbb{c}_1 = 5 - \log(-1) \Rightarrow$$
$$y = \log\left(\frac{t-1}{t}\right) + 5 - \log(-1) \Rightarrow y = \log\left(\frac{1-t}{t}\right) + 5$$

# Existence and Uniqueness Theorem for explicit differential equations

Suppose  $f:(a,b)\to\mathbb{R}$  is continuous. Then  $\forall t_0\in(a,b)\forall y_0\in\mathbb{R}$  the initial value problem (IVP) given below has a unique solution.

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = f(t) \\ y(t_0) = y_0 \end{cases}$$

#### **Proof**

Existence:

$$y(t)=\int_{t_0}^t f(u)\,\mathrm{d}u+y_0$$
 
$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(t)\qquad\text{by the fundamental theorem of calculus}$$
 
$$y(t_0)=\int_{t_0}^{t_0} f(u)\,\mathrm{d}u+y_0=y_0$$

Uniqueness:

Assume y, z both satisfy the given IVP.

$$\begin{split} \frac{\mathrm{d}y}{\mathrm{d}t} &= f(t) = \frac{\mathrm{d}z}{\mathrm{d}z} \text{ and } y(t_0) = z(t_0) \\ \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}[y-z] &= 0 \Rightarrow (y-z)(t) = \mathbb{c} \text{ Since } (y-z)(t_0) = 0, c = 0 \Rightarrow y = z \Box \end{split}$$

# **Definition of Linear Differential Equations**

 $a_1,...,a_n,f,y$  are functions of  $t.\ a_1,...,a_n$  are called coefficients. f is called forcing.

$$y^{(n)}(t) + a_n(t)y^{(n-1)}(t) + \dots + a_2(t)y'(t) + a_1(t)y(t) = f(t)$$

is called a linear differential equation in normal form.

Note that 
$$L=D^n+a_n(t)D^{n-1}+\cdots+a_2(t)D+a_1(t)$$
 is linear. ( $D=\frac{\mathrm{d}}{\mathrm{d}t}$ )

$$L(y_1+y_2) = L(y_1) + L(y_2); \\ L(cy_1) = cL(y_1)$$

An initial value problem is an equation by:

$$\begin{cases} L(y) = f(t) \\ y(t_0) = y_0 \\ \vdots \\ y^{(n-1)}(t_0) = y_{n-1} \end{cases}$$

where  $t_0, y_0, ..., y_{n-1}$  are given constants.

# **Solution to First-Order Linear Differential Equation**

To solve: y' + a(t)y = b(t)

- 1. Find some A(t) such that A'(t) = a(t)
- 2.  $\frac{\mathrm{d}}{\mathrm{d}t} (e^{A(t)}y) = e^{A(t)}b(t)$
- 3. Then solve

#### **Proof**

To solve: y' + a(t)y = b(t)

$$\mu y' + \mu a(t)y = \mu b(t)$$
$$\mu' = \mu a(t)$$
$$\therefore \mu = e^{\int a(t) dt}$$
$$(\mu = A)$$

# Existence and Uniqueness of First Order Linear Differential Equation.

Suppose  $a_1(t)$  and f(t) are continuous over (a,b). Let  $t_0\in(a,b)$  and  $y_0\in\mathbb{R}$  Then the initial value problem:

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} + a_1(t)y = f(t) \\ y(t_0) = y_0 \end{cases}$$

has a unique solution over (a, b).

### **Example**

Solve  $y' + y = e^t$ .

#### Solution 1

$$(y\mu)' = y'\mu + y\mu'$$
 it seems to be in the right form...

$$\mu(y'+y=e^t)$$

$$\mu y' + \mu y = \mu e^t$$

If  $\mu = \mu'$  then we'd have product rule  $: \mu = e^t$ 

$$y'+y=e^t \Rightarrow e^ty'+e^ty=e^{2t} \Rightarrow \left(ye^t\right)'=e^{2t} \overset{\text{explicit}}{\Rightarrow} ye^t = \frac{1}{2}e^{2t} + \mathbb{c} \Rightarrow y = \frac{1}{2}e^t + \mathbb{c}e^{-t} \ \Box$$

#### Solution 2

Set L(y) = y' + y. L is linear. By a theorem,  $L^{-1}(\{e^t\}) = y_1 + \text{Ker } L$  where  $y_1$  is a solution to  $y_1' + y_{1'} = e^t$ .

$$y_1 = \frac{1}{2}e^t \ \text{by guessing}.$$
 
$$y \in \text{Ker } L \Longleftrightarrow y' + y = 0 \Rightarrow y' = -y \Rightarrow \left(e^t y\right)' = 0 \Rightarrow e^t y = c \Rightarrow y = ce^{-t}$$
 
$$y = \frac{1}{2}e^t + ce^{-t}, c \in \mathbb{R} \ \Box$$

# **Separable Equation**

A separable differential equation is one of the form  $\frac{\mathrm{d}y}{\mathrm{d}t}=f(t)g(y).$ 

To solve, write as  $\frac{\mathrm{d}y}{g(y)} = f(t) \, \mathrm{d}t$  and integrate.

$$\int \frac{1}{g(y)} \, \mathrm{d}y = \int \frac{1}{g(y)} y' \, \mathrm{d}t = \int f(t) \, \mathrm{d}t$$

#### Example

Solve  $\frac{dy}{dt} = 2ty^2 + 3t^2y^2$ . Can you find a solution that satisfies y(1) = 0?

#### **Solution**

$$\begin{split} \frac{\mathrm{d}y}{\mathrm{d}t} &= \left(2t + 3t^2\right)y^2 \Rightarrow \frac{\mathrm{d}y}{y^2} = \left(2t + 3t^2\right)\mathrm{d}t \Rightarrow \\ &-\frac{1}{y} = t^2 + t^3 + \mathbb{c} \Rightarrow y = -\frac{1}{t^2 + t^3 + \mathbb{c}} \\ &y(1) = 0 \Rightarrow -\frac{1}{2+t} = 0 \middle\times \\ &y(t) = 0 \text{ is a solution} \end{split}$$

# **Stationary Definition**

A solution to a differential equation is called stationary, fixed, equilibrium, or a critical point if it is a constant.

#### **Example**

find all solutions of

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = ty^2 - ty\\ y(1) = 2 \end{cases}$$

### Solution

$$\frac{\mathrm{d}y}{\mathrm{d}t} = t(y^2 - y)$$

$$\log\left(\frac{y - 1}{y}\right) = \frac{t^2}{2} + \varepsilon$$

$$\Rightarrow \frac{y - 1}{y} = e^{\frac{t^2}{2} + \varepsilon}$$

$$\Rightarrow \frac{y - 1}{y} = \varepsilon e^{\frac{t^2}{2}}.$$

## **Stationary**

$$y^2 - y = 0 \Rightarrow y = 0, 1$$

$$\frac{y-1}{y} = \mathbb{c}e^{\frac{t^2}{2}}, \mathbb{c} \in \mathbb{R}$$

# Change of variables

In general, to solve y' = f(ay + bt + c) for constants  $a, b, c \in \mathbb{R}$ , we set u = ay + bt + c.

$$u' = ay' + b = af(u) + b \Rightarrow u' = af(u) + b$$

Which is separable.

Any DE of the form y' = f(y) is called autonomous.

In general, to solve  $y' = f(\frac{y}{t})$ , substitute  $u = \frac{y}{t}$ .

$$ut = y \Rightarrow u't + u = u' = f(u) \Rightarrow u't = f(u) - u$$

Some examples:

$$y' = \frac{ay + bt}{cy + dt} = \frac{a(\frac{y}{t}) + b}{c(\frac{y}{t}) + d}$$
$$y' = \frac{y^2 + 3yt + t^2}{3y^2 + 7yt} = \frac{(\frac{y}{t})^2 + 3(\frac{y}{t}) + 1}{3(\frac{y}{t})^2 + 7(\frac{y}{t})}$$

In general, to solve  $y'=\frac{ay+bt+c}{my+nt+k}$  with  $a,b,c,m,n,k\in\mathbb{R}$ , select constants Y=y+r,T=t+s where it cancels out the constants and becomes like the above solution. If not possible, substitute something else.

### **Example**

Solve:

$$y' = \frac{e^{y+t} - y - t}{y+t}$$

### **Solution**

Define a function  $u = y + t \Rightarrow u' = y' + 1$ 

$$u' - 1 = \frac{e^u - u}{u} \Rightarrow u' = \frac{e^u}{u}$$

Stationary:  $\frac{e^u}{u}=0$  has no solutions

$$\int \frac{u}{e^u} du = \int dt$$

$$f = u, df = 1, dg = e^{-t}, g = -e^{-t}$$

$$u = t + \varepsilon$$

$$-ue^{-u} - e^{-u} = t + \varepsilon$$

$$-(y+t)e^{-y-t} - e^{-y-t} = t + c$$

### **Example**

Solve

$$y' = \frac{y - t}{y + t}$$

### **Solution**

$$y' = \frac{\frac{y}{t} - 1}{\frac{y}{t} + 1}$$

$$u = \frac{y}{t} \Rightarrow ut = y \Rightarrow u't + u = y' \Rightarrow \frac{u - 1}{u + 1} \Rightarrow u't = \frac{u - 1}{u + 1} - u = \frac{-1 - u^2}{u + 1} \Rightarrow u' = \frac{-1 - u^2}{u + 1} \cdot \frac{1}{t}$$
which is separable
$$\frac{-1 - u^2}{u + 1} = 0 \Rightarrow 1 + u^2 = 0 \Rightarrow \text{no stationary solution } \int \frac{u + 1}{u^2 + 1} \, \mathrm{d}u = \int -\frac{1}{t} \, \mathrm{d}t$$

$$\int \frac{u}{u^2 + 1} \, \mathrm{d}u + \int \frac{1}{u^2 + 1} \, \mathrm{d}u = \log(t) + \varepsilon$$

$$\frac{1}{2} \log\left(\left(\frac{y}{t}\right)^2 + 1\right) + \arctan(u) = \log(t) + \varepsilon$$

$$\frac{1}{2} \log\left(\left(\frac{y}{t}\right)^2 + 1\right) + \arctan\left(\frac{y}{t}\right) = \log(t) + \varepsilon$$

### **Example**

Solve 
$$y' = \frac{y-t+1}{y+t-3}$$

$$T = t + a, Y = y + b$$
 for some  $a, b \in \mathbb{R}$ .

$$\frac{Y - b - T + a + 1}{Y - b + T - a - 3} \rightarrow \begin{cases} -b + a + 1 = 0 \\ -b - a - 3 = 0 \end{cases} \rightarrow \begin{cases} b = -1 \\ a = -2 \end{cases} \rightarrow \frac{\mathrm{d}Y}{\mathrm{d}T} = \frac{Y - T}{Y + T}, T = t - 2, Y = y - 1$$

: look above for the answer to this

$$\left| \frac{1}{2} \log \left( \left( \frac{y-1}{t-2} \right)^2 + 1 \right) + \arctan \left( \frac{y-1}{t-2} \right) = \log(t-2) + \varepsilon \right|$$

(assume  $c \in \mathbb{C}$  and the complex logarithm)

# **Exact Equations and Integrating Factor**

Suppose  $\Phi(t,y)=c$  solves a differential equation.

$$\Phi_t + \Phi_y y' = 0$$
 by chain rule

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}(\Phi(t,y(t))) \Rightarrow \Phi(t,y) = c$$

### **Example**

Solve  $e^t y + 2t + (2y + e^t)y' = 0$ 

### Solution

Let's find  $\Phi$ 

$$\begin{cases} \int \Phi_t \, \mathrm{d}t = \int e^t y + 2t \, \mathrm{d}t \\ \int \Phi_y \, \mathrm{d}y = \int 2y + e^t \, \mathrm{d}y \end{cases} \rightarrow \begin{cases} \Phi = e^t y + t^2 + f(y) \text{ Let } f(y) = y^2 \wedge g(t) = t^2 \\ \Phi = e^t y + y^2 + g(t) \end{cases} \\ \Phi = e^t y + t^2 + y^2 \text{ $:$ solutions are } e^t y + t^2 + y^2 = c, c \in \mathbb{R}$$

# **Exact Definition**

A differential equation  $M(t,y)+N(t,y)\frac{\mathrm{d}y}{\mathrm{d}(t)}=0$  is called exact over an open rectangle  $R=(a,b)\times(c,d)$  on the ty-plane if there is a function  $\Phi(t,y)$  defined on R such that  $\Phi_t=M$  and  $\Phi_y=N$  for all  $(t,y)\in R$ . Sometimes this is written as  $M(t,y)\,\mathrm{d}t+N(t,y)\,\mathrm{d}y=0$ .

$$\begin{cases} \Phi_t = M \\ \Phi_y = N \end{cases}$$
 
$$\Rightarrow \vec{f} = M\vec{i} + N\vec{j} + 0\vec{k} \Rightarrow \text{curl } \vec{F} = \left(N_t - M_y\right)\vec{k}$$

# Theorem for seeing if Exact

Let M(t,y), N(t,y) be  $C^1$  functions over an open rectangle  $R=(a,b)\times (c,d)$  on the ty-plane. Then, there is a function  $\Phi(t,y)$  defined over R such that  $\Phi_t=M$  and  $\Phi_y=N$  over R iff  $M_y=N_t$ 

### **Proof**

- $\Rightarrow$  Suppose  $\Phi_t=M \land \Phi_y=N$  then  $M_y=\Phi_{ty}=\Phi_{yt}=N_t$  by Clairaut's Theorem. Notice  $M_y \land N_t$  are both continuous by being  $C^1$ .
- $\Leftarrow$  Suppose  $M_u=N_t$  we will find  $\Phi$  such that

$$\begin{cases} \Phi_t(t,y) = M(t,y) \\ \Phi_y(t,y) = N(t,y) \end{cases}$$
 Fix  $t_0$  inside  $(a,b)$  
$$\Phi(t,y) = \int_{t_0}^t M(x,y) \, \mathrm{d}x + g(y)$$
 
$$\Phi_y = \int_{t_0}^t M_y(x,y) \, \mathrm{d}x + g'(y)$$
 
$$= \int_{t_0}^t N_x(x,y) \, \mathrm{d}x + g'(y)$$
 
$$= N(x,y)|_{x=t_0}^{x=t} + g'(y) = N(t,y) - N(t_0,y) + g'(y)$$
 
$$\Phi_y = 0 \Longleftrightarrow N(t_0,y) = g'(y). \text{ Since } N \text{ is continuous and depends only on } y,$$
 
$$g(y) = \int N(t_0,y) \, \mathrm{d}y \text{ exists as a function of } y$$

Solve 
$$(xy^2 + y + e^x) + (x^2y + x)y' = 0$$

Is this exact?

$$\frac{\mathrm{d}}{\mathrm{d}y}[xy^2 + y + e^x] = 2yx + 1$$

$$\frac{\mathrm{d}}{\mathrm{d}x}[x^2y + x] = 2yx + 1$$
Yes it is exact.

$$\begin{split} \Phi_x &= xy^2 + y + e^x \Rightarrow \Phi = \int xy^2 + y + e^x \, \mathrm{d}x = \frac{x^2y^2}{2} + xy + e^x + f(y) \\ \Phi_y &= x^2y + x \Rightarrow x^2y + x + f'(y) = xy^2 + x \Longrightarrow f'(y) = 0 \Rightarrow f(y) = 0 \text{ works} \\ & \\ \vdots \boxed{\frac{x^2y^2}{2} + xy + e^x = \mathbb{c}} \end{split}$$

## **Example**

Solve the IVP:

$$\begin{cases} 3t^2y + 8ty^2 + (t^3 + 8t^2y + 12y^2)y' = 0\\ y(2) = 1 \end{cases}$$

$$\frac{\partial}{\partial y} (3t^2y + 8ty^2) = 3t^2 + 16ty = \frac{\partial}{\partial t} (t^3 + 8t^2y + 12y^2) :: \text{ exact}$$

$$\Phi_t = 3t^2y + 8ty^2 \Rightarrow \Phi = t^3y + 4t^2y^2 + g(y)$$

$$\Phi_y = t^3 + 8t^2y + 12y^2 \Rightarrow t^3 + 8t^2y + g'(y) = t^3 + 8t^2y + 12y^2 \Rightarrow g'(y) = 12y^2 \Rightarrow g(y) = 4y^3 \text{ works}$$

$$: t^3y + 4t^2y^2 + 4y^3 = \mathbb{C} \text{ are all the solutions}$$

$$2^3(1) + 4(2)^2(1)^2 + 4(1)^3 = \mathbb{C}$$

$$8 + 16 + 4 = 28 = \mathbb{C}$$

$$: t^3y + 4t^2y^2 + 4y^3 = 28$$

Solve

$$2ty + (2t^2 - e^y)y' = 0$$

.

Solution

$$\frac{\partial}{\partial y}2ty = 2t \neq 4t = \frac{\partial}{\partial t}(2t^2 - e^y)$$

Exact does not work.

$$2ty + (2t^2 - e^y)y' = 0$$
$$2t\mu y + (2t^2 - e^y)\mu y' = 0$$

We need to find  $\mu$  so the differential equation is exact.

$$\frac{\partial}{\partial y} 2ty\mu = \frac{\partial}{\partial t} (2t^2 - e^y)\mu$$

$$2t\mu + 2ty\mu_y = 4t\mu + (2t^2 - e^y)\mu_t$$

$$\mu = y \text{ because we need to kill the } e^y$$

$$2t(y) + 2ty(1) = 4t(y) + (2t^2 - e^y) \cdot 0$$

$$4ty = 4ty$$

$$\therefore \text{ now exact}$$

$$\vdots$$

$$e^y(y-1) + t^2y^2 = \mathbb{c}$$

# To find an integrating factor

- 1. multiply both sides by  $\mu$
- 2. use the  ${\cal M}_y={\cal N}_t$  to find a PDE in terms of  $\mu$
- 3. Try  $\mu=\mu(t)$  and  $\mu=\mu(y)$

### Example

Solve 
$$4xy + 3y^3 + (x^3 + 3xy^2)y' = 0$$

#### Solution

$$\begin{split} \frac{\partial}{\partial y}(4xy+3y^3) &= 4x + 9y^2 \neq 2x + 3y^2 = \frac{\partial}{\partial x}(x^2+3xy^2) \text{ : not exact} \\ \frac{\partial}{\partial y}((4xy+3y^3)\mu) &= \frac{\partial}{\partial x}((x^2+3xy^2)\mu) \\ (4x+9y^2)\mu + (4xy+3y^3)\mu_y &= (2x+3y^2)\mu + (x^2+3xy^2)\mu_x \\ (2x+6y^2)\mu + (4xy+3y^3)\mu_y &= (x^2+3xy^2)\mu_x \\ \mu &= x^2 \\ &\vdots \\ y^3x^3+yx^4 &= \mathbb{c} \end{split}$$

# **Chapter 5: Existence and Uniqueness Theorems**

Usually used when you can't actually solve a differential equation.

# **Existence and Uniqueness Theorem for Linear Equations**

Let I be an open interval, and let  $a_1(t),...,a_{n(t)},f(t)$  be continuous functions over I. For every  $t_0\in I$  and every  $y_0,...,y_{n-1}\in\mathbb{R}$  the following initial value problem has a unique solution:

$$\begin{cases} y^{(n)} + a_n(t)y^{(n-1)} + \dots + a_2(t)y' + a_1(t)y = f(t) \\ y(t_0) = y_0 \\ y'(t_0) = y_1 \\ \vdots \\ y^{n-1}(t_0) = y_{n-1} \\ D = \frac{\mathrm{d}}{\mathrm{d}t}; L = D^n + a_{n(t)}D^{n-1} + \dots + a_2(t)D + a_1(t) \\ L(y) = f(t). \end{cases}$$

### **Example**

Find the largest interval I for which the existence and uniqueness theorem guarantees a unique solution to the IVP for  $t \in I$ .

$$\begin{cases} ty'' + \frac{\tan(t)}{t-3}y' - y = e^t \\ y(1) = 2 \\ y'(1) = 4 \end{cases}$$

$$y'' + \frac{\tan(t)}{t(t-3)}y' + \frac{1}{t}y = \frac{e^t}{t}$$
$$t_0 = 1 : 1 \in I$$
$$\tan(t) \Rightarrow t \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$
$$t(t-3) \Rightarrow t \neq \{0, 3\}$$
Because  $1 \in I, I = \left(0, \frac{\pi}{2}\right)$ 

Prove the function  $y = \sin(t^2)$  cannot be a solution to a second-order homogeneous linear differential equation whose coefficients are continuous over (-1,1).

### Solution 1

Suppose on the contrary  $y = \sin(t^2)$  satisfies

$$\begin{split} y'' + a_2(t)y' + a_1(t)y &= 0 \text{ with } a_1, a_2 \text{ continuous over } (-1,1) \\ y' &= 2t\cos(t^2) \\ y'' &= 2\cos(t^2) - 4t^2\sin(t^2) \\ 2\cos(t^2) - 4t^2\sin(t^2) + a_2(t)2t\cos(t^2)y' + a_1(t)y &= 0 \\ 2\cos(t^2) - 4t^2\sin(t^2) + a_2(t)2t\cos(t^2) + a_1(t)\sin(t^2) &= 0 \\ \text{Plug in } 0 \\ 2 - 0 + 0 + 0 &\stackrel{?}{=} 0 \\ 2 \neq 0 & \therefore \text{ cannot be a solution} \end{split}$$

### Solution 2

$$y = \sin(t^2)$$

$$y' = 2t\cos(t^2)$$

$$\begin{cases} y'' + a_2(t)y' + a_1(t)y = 0\\ y(0) = 0\\ y'(0) = 0 \end{cases}$$

y(t) = 0 is another solution : by uniqueness  $y = \sin(t^2)$  cannot be a solution.

# **Picard Iterates**

To show a solution to the IVP below exists:

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = f(t,y) \\ y(t_0) = y_0 \end{cases}$$

We:

- 1. Create a sequence  $y_n$  of functions.
- 2. Show  $y_n$  converges to y.

### 3. Show y satisfies the IVP.

Let  $y_0$  be the first term, a constant.

$$\begin{split} \frac{\mathrm{d}y}{\mathrm{d}t} &= f(t,y) \Rightarrow y = \int f(t,y(t)) \mathrm{d}t \\ &\Rightarrow y = y_0 + \int_{t_0}^t f(s,y(s)) \mathrm{d}s \\ y_1(t) &= y_0 + \int_{t_0}^t f(s,y_0) \mathrm{d}s \\ y_2(t) &= y_0 + \int_{t_0}^t f(s,y_1(s)) \mathrm{d}s \\ &\vdots \\ y_{n+1}(t) &= y_0 + \int_{t_0}^t f(s,y_n(s)) \mathrm{d}s \end{split}$$

 $y_0, y_1, y_2, \dots$  are called Picard Iterates

### **Proofish**

Assume 
$$y_n \to y$$
 
$$y_n = y_0 + \int_{t_0}^t f(s, y_{n-1}(s)) \mathrm{d}s$$
 
$$\downarrow$$
 
$$y = y_0 + \int_{t_0}^t f(s, y(s)) \mathrm{d}s$$
 
$$\downarrow$$
 
$$y' = f(t, y(t))$$

# **Example**

Solve the IVP  $y'=y^2, y(0)=1$ . Show this solution is not defined over  $\mathbb{R}$ .

### **Solution**

This is separable. Since  $y(0) \neq 0$ , the solution is not stationary.

$$\int \frac{\mathrm{d}y}{y^2} = \int 1 \mathrm{d}t \Rightarrow -\frac{1}{y} = t + \mathbf{c}_1 \overset{y(0)=1}{\Rightarrow} y = -\frac{1}{t + \mathbf{c}_1} \Rightarrow y(t) = -\frac{1}{t-1}$$

The largest possible domain of this solution is  $(-\infty, 1) \neq \mathbb{R}$ 

### **Example**

Find two solutions to the IVP

$$y' = 3y^{\frac{2}{3}}, y(0) = 0$$

### Solution

y = 0 is one solution by inspection

$$\int \frac{y'}{3y^{\frac{2}{3}}} dt = \int 1 dt$$

$$\int \frac{1}{3y^{\frac{2}{3}}} = t + \varepsilon_1$$

$$y^{\frac{1}{3}} = t + \varepsilon_1$$

$$y = (t + \varepsilon_1)^3$$

$$\therefore y = t^3 \text{ is a solution}$$

All solutions:

$$\forall a \le 0 \le b \in \mathbb{R}, y = \begin{cases} (t-b)^3 & \text{if } t > b \\ 0 & \text{if } a \le t \le b \\ (t-a)^3 & \text{if } t < a \end{cases}$$

### **Thoughts**

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = f(t,y) \\ y(t_0) = y_0 \end{cases}$$

How do we show the existence of something without finding it?

# Examples of knowing the existence but not finding it

• Definite integrals are defined as a limit of Riemann sums.

We need to show that the limit exists

- · Initial value problem of linear differential equations
- Summation converging

# **Example of Summation converging**

Prove 
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$$
 is defined for all  $x \in \mathbb{R}$ .

## Solution

$$-1 \leq \sin(nx) \leq 1 \Rightarrow \frac{|\sin(nx)|}{n^2} \leq \frac{1}{n^2}$$
 By  $p$ -test with  $p = 2, 2 > 1, \sum_{n=1}^{\infty} \frac{1}{n^2}$  converges. By the comparison test,  $\sum_{n=1}^{\infty} \frac{|\sin(nx)|}{n^2}$  converges. By the absolute convergence test,  $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$  converges.

We know the above theorems by taking the limit of partial sums; let's try a similar idea with an IVP.

Compute the Picard Iterates for the IVP

$$\begin{cases} y' = \underbrace{y}_{f(t,y)} \\ y(\underbrace{0}_{t_0}) = \underbrace{1}_{y_0} \end{cases}$$

and show they converge to the solution this given IVP.

#### Solution

$$y_0 = 1$$
 
$$y_1 = 1 + \int_0^t 1 \mathrm{d}s = 1 + ty_2 = 1 + \int_0^t 1 + s \mathrm{d}s = 1 + t + \frac{t^2}{2}$$
 
$$y_3 = 1 + \int_0^t 1 + s + \frac{s^2}{2} \mathrm{d}s = 1 + t + \frac{t^2}{2} + \frac{t^3}{3!}$$
 
$$\vdots$$
 
$$\text{Claim: } y_n = \sum_{k=0}^n \frac{t^k}{k!}$$

Proof by induction on n.

Base case 
$$n=0 \rightarrow y_0=1$$
  $\checkmark$ 

Inductive Hypothesis : Suppose 
$$y_n = \sum_{k=0}^n \frac{t^k}{k!}$$

Inductive Step:

$$y_{n+1} = 1 + \int_0^t \sum_{k=0}^n \frac{s^k}{k!} ds = \sum_{k=0}^{n+1} \frac{t^k}{k!}$$
$$\lim_{n \to \infty} y_{n(t)} = \sum_{k=0}^{\infty} \frac{t^k}{k!} = e^t$$

$$y' = y \to \frac{y'}{y} = 1 \to \int \frac{y'}{y} dt = \int 1 dt \to \log(y) = t + \varepsilon \to y = e^{t+\varepsilon} \to y = \varepsilon e^t \to y = e^t$$
$$e^t = e^t, \text{ which is what we got via picard iterates.}$$

# **Integral Comparison Theorems**

$$\forall x \in [a, b] f(x) \le g(x) \Rightarrow \int_a^b f(x) dx - \int_a^b g(x) dx$$
$$\left| \int f(x) dx \right| \le \int |f(x)| dx$$

### **Mean Value Theorem**

$$\exists c \in [a,b] f'(c) = \frac{f(b) - f(a)}{b - a}$$

# First-Order Differential Equations Existence and Uniqueness

Suppose f(t,y) and  $f_y(t,y)$  are continuous over a rectangle R on the ty-plane given by  $t_0 \leq t \leq t_0 + a$ ,  $|y-y_0| \leq b$ . Let M be  $\forall (t,y) \in R, |f(t,y)| \leq M$  (this must exist by the extreme value theorem) and let  $\alpha = \min \left(a, \frac{b}{M}\right)$ . Then the IVP

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = f(t,y) \\ y(t_0) = y_0 \end{cases}$$

has a continuous solution defined over  $[t,t_0+\alpha]$ . Furthermore,  $|y(t)-y_0|\leq b$  for all  $t\in[t_0,t_0+\alpha]$ . A similar result holds for  $[t_0-\alpha,t_0]$  and  $[t_0-\alpha,t_0+\alpha]$ 

## **Proofish of existence**

M is the maximum of |f(t,y)|

$$\therefore -M \le \frac{\mathrm{d}y}{\mathrm{d}t} \le M$$

 $\therefore$  the max or min y can reach is  $y = Mt + y_0 \lor y = -Mt + y_0$  for  $t \in R$ .

Solve for escape:  $y_0 + b = Mt + y_0 \vee y_0 - b = -Mt + y_0 \Rightarrow b = Mt \vee -b = -Mt \Rightarrow 0$ 

$$t = \frac{b}{M} \text{ ... the solution would exist for } t \in \left[t_0, \frac{b}{M}\right] \cap \underbrace{R}_{\text{where the maximum slope is guaranteed over}}.$$

### **Example**

Consider the IVP

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = t + e^{-y^2} \\ y(0) = 0 \end{cases}$$

Show there is a unique solution defined over  $\left[0,\frac{1}{2}\right]$  and that this solution satisfies  $|y(t)|\leq 1$  for all  $t\in\left[0,\frac{1}{2}\right]$ .

$$\begin{split} t_0 = 0, y_0, \text{Suppose } a, b > 0, \text{and } t \in [0, a], y \in [-b, b] \\ \left| t + e^{-y^2} \right| \leq a + e^{-0} = a + 1 \\ M = a + 1, \alpha = \min \left( a, \frac{b}{a+1} \right), t + e^{-y^2} \text{ is } C^{\infty}. \text{ Thus, we can apply the theorem.} \\ & \therefore \exists \text{ a unique solution } y(t) \text{ defined over } [0, \alpha] \end{split}$$

Let 
$$a = 1, b = 1$$
.

$$\alpha = \min\left(a, \frac{b}{a+1}\right) \min\left(1, \frac{1}{1+1}\right) = \min\left(1, \frac{1}{2}\right) = \frac{1}{2}.$$
$$|y| \le b \Rightarrow |y| \le 1$$

 $\cdot \cdot$  a unique solution is defined over  $\left[0,\frac{1}{2}\right]$  and  $|y| \leq 1$ 

# **Proof of Uniqueness**

Suppose 
$$z_1(t)$$
 and  $z_2(t)$  both satisfy the given IVP: 
$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = f(t,y) \\ y(t_0) = y_0 \end{cases}$$
 Recall  $y(t) = y_0 \int_{t_0}^t f(s,y(s)) \mathrm{d}s$  
$$|z_1(t) - z_2(t)| =$$
 
$$\left| y_0 + \int_{t_0}^t f(s,z_1(s)) \mathrm{d}s - y_0 - \int_{t_0}^t f(s,z_2(s)) \mathrm{d}s \right|$$
 
$$= \left| \int_{t_0}^t f(s,z_1(s)) - f(s,z_2(s)) \mathrm{d}s \right|$$

 $f_y$  exists and f is continuous. By the MVT there is some c between  $z_1(s)$  and  $z_2(s)$  such that

 $\leq \int_{\cdot}^{\iota} |f(s, z_1(s)) - f(s, z_2(s))| \mathrm{d}s$ 

$$\begin{split} &f(s,z_1(s)) - f(s,z_2(s)) = f_y(s,c)(z_1(s) - z_2(s)) \\ \Rightarrow & |z_1(t) - z_2(t)| \leq \int_{t_0}^t \left| f_y(s,c) \right| |(z_1(s) - z_2(s))| \mathrm{d}s \end{split}$$

Since  $f_y$  is continuous over R, by the EVT, there is a constant L such that  $|f_y(s,c)| \leq L$ , for all s,c

$$\begin{split} \Rightarrow \underbrace{|z_1(t)-z_2(t)|}_{W'(t)} &\leq L \underbrace{\int_{t_0}^t |(z_1(s)-z_2(s))| \mathrm{d}s}_{W(t)} \\ &\Rightarrow W'(t)-LW(t) \leq 0 \\ &\Rightarrow e^{-Lt}W'(t)-Le^{-Lt}W(t) \leq 0 \\ &\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \big(e^{-Lt}W(t)\big) \leq 0 \end{split}$$

 $e^{-Lt}W(t)$  is decreasing over  $[t_0, t_0 + \alpha]$ .

$$\begin{split} \Rightarrow e^{-Lt}W(t) &\leq e^{-Lt_0}W(t_0) = e^{-Lt_0} \int_{t_0}^{t_0} |z_1(s) - z_2(s)| \mathrm{d}s = 0 \\ &\Rightarrow W(t) \leq 0 \Rightarrow \int_{t_0}^t |z_1(s) - z_2(s)| \ \mathrm{d}s \leq 0 \\ &|z_1(s) - z_2(s)| \geq 0 \Rightarrow \int_{t_0}^t |z_1(s) - z_2(s)| \mathrm{d}s \geq 0 \\ &\Rightarrow \int_{t_0}^t |z_1(s) - z_2(s)| = 0 \stackrel{\mathrm{differentiation}}{\Longrightarrow} |z_1(t) - z_2(t)| = 0 \Rightarrow z_1 = z_2 \end{split}$$

 $\mathcal{B}$ 

Show the following IVP has a unique solution defined over  $[0, \infty)$ :

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = e^{-y^2} + t^2\\ y(0) = 1 \end{cases}$$

### **Solution**

To show infinity, show that it can go to any arbitrary number h.

Let 
$$a, b > 0, 0 \le t \le a, |y - 1| \le b$$

$$e^{-y^2} + t^2 \text{ is } C^{\infty} :: C^1$$

$$|e^{-y^2} + t^2| = e^{-y^2} + t^2 \le 1 + t^2 \le 1 + a^2 = M$$

$$\alpha = \min\left(a, \frac{b}{1 + a^2}\right)$$
Let  $b = a(1 + a^2) \Rightarrow \alpha = \min(a, a) = a$ 

By the existence and uniqueness theorem there is a solution over [0, a] for all a

Let  $y_n$  be the unique solution to the given IVP with  $t \in [0, n] \forall n \in \mathbb{Z}^+$ .

Note that if 
$$n < m$$
 then  $y_n(t) = y_m(t) \forall t \in [0, n]$ .

 $y_n \cdot y_n \cdot y_m$  both satisfy the given IVP with  $t \in [0, n]$  and by uniqueness  $y_n = y_m$  over [0, n]

Define 
$$y(t)=y_n(t), 0\leq t\leq n$$
 
$$y'(t)=y'_n(t)=e^{-y^2}+t^2, y(0)=y_n(0)=1 \quad \text{(existence)}$$

Uniqueness: Assume y, z are both solutions. Use the uniqueness of  $y_n$  to show y = z over  $\mathbb{R}$ 

# **Chapter 6: Numerical Methods**

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = f(t,y) \\ y(t_0) = y_0 \end{cases}$$

Sometimes, we can solve these, but that is uncommon in the space of possible functions. We do, however, know there is a solution by the existence and uniqueness theorem.

Assuming a unique solution exists, can we approximate  $y(t_f)$ ?

# The Lagrange Remainder Theorem

$$f(a+h) = f(a) + \frac{f'(a)}{1!}h + \frac{f''(a)}{1!}h^2 + \dots + \frac{f^{(n)}(a)}{1!}h^n + \frac{f^{(n+1)}(c)}{(n+1)!}h^{n+1}$$
 
$$c \in [a, a+h]$$

$$n = 0 \Rightarrow f(a+h) = f(a) + f'(c)h \Rightarrow f'(c) = \frac{f(a+h) - f(a)}{h}$$
 $\approx \text{linear approximation}$ 

Mean Value theorem

# **Euler's Method**

To approximate  $y(t_f)$  we divide  $\left[t_0,t_f\right]$  into n subintervals of width  $h=\frac{t_f-t_0}{n}$ . Let  $t_k=t_0+kh$  for k=1,...,n

$$\begin{cases} y_0 = y_0 \\ y_k = y_{k-1} + hf(t_{k-1}, y_{k-1}) \Longrightarrow y_k \approx y(t_k) \end{cases}$$

# **Getting the idea**

# **Example**

Approximate  $y' + y^2 + t^2$ , y(0) = 1. Approximate y(0.2) using 1 step then 2 steps

# Solution

First, prove that there is a unique solution defined over [0, 0.2].

: □

1 Step

$$y(0.2) \approx 1 + 0.2(1^2 + 0^2) = 1.2 \Rightarrow y(0.2) \approx 1.2$$

2 Step

$$\begin{split} t_0 &= 0, t_1 = 0.1, t_2 = 0.2, h = 0.1, y_0 = 1 \\ y_1 &= \underbrace{1}_{y_0} + \underbrace{0.1}_{h} \underbrace{\left(1^2 + 0^2\right)}_{f(0,1)} = 1.1 \\ y_2 &= \underbrace{1.1}_{y_1} \underbrace{0.1}_{h} \underbrace{\left(\left(1.1\right)^2 + \left(0.1\right)^2\right)}_{f(0.1,1.1)} = 1.222 \end{split}$$

### **Euler's Method: Error**

Objective: Find an approximation for  $|y(t_n) - y_n|$ .

Use the Lagrange Remainder Theorem:

$$\begin{aligned} \text{Set } n &= 1: f(a+h) = f(a) + f'(a)h + \frac{f''(c)}{2}h^2 \\ \text{Substitute } a &= 5_k, h = \text{step size} = \frac{t_n - t_0}{n}, f = y \\ f(t_k + h) &= y(t_k) + y'(t_k)h + \frac{y''(c_k)}{2}h^2; t_0 \leq c_k \leq t_k + h \\ y' &= f(t,y) \Rightarrow y'' = f_t + f_y \cdot y' \Rightarrow f_t + f_y f \\ y(t_{k+1}) &= y(t_k) + f(t_k, y(t_k))h \frac{(f_t + f_y f)(c_k)}{2}h^2 \\ y(t_{k+1} - y_{k+1}) &= y(t_k) - y_k + h(f(t_k, y(t_k)) - f(t_k, y_k)) + \frac{h^2}{2}(f_t + f_y f)(c_k, y(c_k)) \\ \text{By the MVT as a function of y: } \frac{f(t_k, y(t_k)) - f(t_k, y_k)}{y(t_k) - y_k} &= f_y(t_k, d_k), \text{ for some } d_k \text{ between } y(t_k) \text{ and } y_k \\ &\Rightarrow f(t_k, y(t_k)) - f(t_k, y_k) &= (y(t_k) - y_k)f_y(t_k, d_k) \\ \text{Suppose } |f_y| &\leq L, |f_t + f_y f| \leq D \text{ for constants } L, D \\ y(t_{k+1}) - y_{k+1} &= y(t_k) - y_k + h(f(t_k, y(t_k)) - f(t_k, y_k)) + \frac{h^2}{2}(f_t + f_y f)(c_k, y(c_k)) \\ \Rightarrow |t_{k+1} - y_{k+1}| &= E_{k+1} = \left| y(t_k) - y_k + h(y(t_k) - y_k)f_y(t_k, d_k) + \frac{h^2}{2}(f_t + f_y f)(c_k, y(c_k)) \right| \leq E_k + hE_k L + \frac{h^2}{2}D \\ E_{k+1} &\leq \underbrace{(1 + hL)}_A E_k + \underbrace{\frac{h^2D}{2}}_2; E_0 = 0 \end{aligned}$$

$$E_n \le AE_{n-1} + B \le A(AE_{n-2} + B) + B \le A^2E_{n-2} + 2B \le A^kE_{n-k} + \sum_{i=0}^{k-1} A^iB$$
 Let  $k = n$  
$$= \frac{B - A^nB}{1 - A} = \frac{1 - (1 + hL)^n}{1 - 1 + h} \frac{h^2D}{2} \Rightarrow E_n \le \frac{\left((1 + hL)^n - 1\right)hD}{2L}$$
 
$$E_n \le \frac{\left(e^{(hL)^n} - 1\right)Dh}{2L} = \underbrace{\frac{\left(e^{aL} - 1\right)D}{2L}} h$$

 $\therefore$  We say the error is O(h) (asymptotic towards 0)

or 
$$O\left(\frac{1}{n}\right)$$
 (asymptotic towards  $\infty$ )

### **Example**

Suppose the error is estimating the value of a solution to a 1st order IVP using Euler's method is approximated to be no more than 0.1. What changes should we make in order to guarantee the error does not exceed 0.01?

### Solution

Decrease the step size by a factor of 10 because the error is O(h). (multiply h by  $\frac{1}{10}$  or multiply n by 10).

# **Alternative Approximations**

$$y(t+h) = y(t) + \int_{t}^{t+h} y'(s) ds = y(t) + \int_{t}^{t+h} f(s, y(s)) ds$$

### **Left Endpoint**

$$\begin{split} \approx y(t) + hf(t,y(t)) \\ \Rightarrow y(t_{k+1}) \approx y(t_k) + hf(t_k,y(t_k)) \\ y_{k+1} = y_k + hf(t_k,y_k), \text{which is the Euler's Method} \end{split}$$

## **Runge-Midpoint**

$$\begin{split} \int_t^{t+h} f(s,y(s)) \mathrm{d}s &\approx \underbrace{h}_{\text{base}} \cdot f \left( \underbrace{t + \frac{h}{2}}, y \left( t + \frac{h}{2} \right) \right) \\ &\Rightarrow y_{k+1} = y_k + h f \left( t_k + \frac{h}{2}, y_{k+\frac{1}{2}} \right) \\ &f_k = f(t_k, y_k); y_{k+\frac{1}{2}} = y_k + \frac{h}{2} f_k \\ E_n &= O(h^2) \qquad \text{(asymptotic towards 0)} \\ &f_k = f(t_k, y_k), t_{k+\frac{1}{2}} = t_k + \frac{h}{2} \\ &y_{k+\frac{1}{2}} = y_k + \frac{h}{2} f_k, f_{k+\frac{1}{2}} = f \left( t_{k+\frac{1}{2}}, y_{k+\frac{1}{2}} \right) \\ &y_{k+1} = y_k + h f_{k+\frac{1}{2}} \end{split}$$

### Runge-Trapezoidal

$$\begin{split} f_k &= f(t_k, y_k), \widetilde{y}_{k+1} = y_k + h f_k \\ \widetilde{f}_{k+1} &= f \Big( t_{k+1}, \widetilde{f}_{k+1} \Big) \\ y_{k+1} &= y_k + \frac{h}{2} \Big( f_k + \widetilde{f}_{k+1} \Big) \\ E_n &= O(h^2) \qquad \text{(asymptotic towards 0)} \end{split}$$

### Runge-Kutta

Apply Simpson's approximation to  $\int_t^{t+h} f(s,y(s)) \mathrm{d}s$ 

Error is  $O(h^4)$  (asymptotic towards 0)

Simpson's rule: for every three points, make a parabola out of them, then integrate that approximation rather than the original graph.

# **Example**

Approximate y(0.2) using midpoint and trapezoidal methods where y satisfies  $\frac{dy}{dt}=t+y^2, y(0)=1$ . Use 1 step.

### Solution

### **Midpoint**

$$\begin{split} n = 1, h = 0.2, t_0 = 0, t_{\frac{1}{2}} = 0.1, t_1 = 0.2, y_0 = 1 \\ f_0 = f(0, 1) = 0 + 1^2 = 1 \\ y_{\frac{1}{2}} = 1 + 0.1 \cdot 1 = 1.1 \\ f_{\frac{1}{2}} = 0.1 + (1.1)^2 = 0.1 + 1.21 = 1.31 \\ y(0.2) \approx 1 + 1.31 \cdot 0.2 = 1.262 \end{split}$$

# **Trapezoidal**

$$\begin{split} \widetilde{y}_1 &= 1 + 1 \cdot 0.2 = 1.2 \\ \widetilde{f}_1 &= 0.2 + 1.2^2 = 0.2 + 1.44 = 1.64 \\ y_1 &= 1 + \frac{0.2}{2} \cdot (1 + 1.64) = 1 + 0.1 \cdot (2.64) = 1.264 \end{split}$$

# **Example**

Error 
$$< 0.1, n = 10$$

How many steps to guarantee error  $\leq 10^{-5}$ 

### Solution

Euler: Error is:

$$O(h) = O\left(\frac{1}{n}\right) \Rightarrow \text{division by } 10^4 \Rightarrow \text{multiply } n \text{ by } 10^4$$

Midpoint and Trapezoidal:  $O(h^2) \Rightarrow n = 1000 \ \mathrm{steps}$ 

Runge-Kutta:  $O(h^4) \Rightarrow 100$  steps

# **Chapter 7: Higher Order Linear Equations**

# **Definition of Linear Equations**

$$\begin{split} y^{(n)} + a_n(t) y^{(n-1)} + \cdots a_2(t) y'(t) + a_1 y(t) &= f(t) \\ \text{Let } D = \frac{\mathrm{d}}{\mathrm{d}t}. \text{ Then,} \\ D^n[y] + a_n(t) D^{n-1}[y] + \cdots + a_2(t) D_1[y] + a_1 y &= f(t) \\ \Rightarrow L = D^n + a_n D^{(n-1)} + \cdots + a_2(t) D + a_1(t) I \\ L(y) &= f(t) \\ L[\mathbb{c}_1 y_1 + \mathbb{c}_2 y_2] &= \mathbb{c}_1 L[y_1] + \mathbb{c}_2 L[y_2] \\ \text{for constants } \mathbb{c}_1, \mathbb{c}_2 \text{ and functions } y_1, y_2 \end{split}$$

# Uniqueness and Existence Theorem for Differential Linear Equations

Let I be an open interval, and let  $a_1(t),...,a_{n(t)},f(t)$  be continuous functions over I. For every  $t_0\in I$  and every  $y_0,...,y_{n-1}\in\mathbb{R}$  the following initial value problem has a unique solution:

$$y_{n-1}\in\mathbb{R}$$
 the following initial value problem has a under 
$$\begin{cases} y^{(n)}+a_n(t)y^{(n-1)}+\cdots+a_2(t)y'+a_1(t)y=f(t)\\ y(t_0)=y_0\\ y'(t_0)=y_1\\ \vdots\\ y^{n-1}(t_0)=y_{n-1} \end{cases}$$

# General Solution to a linear differential equation from a particular solution

The general solution to a linear differential equation is  $\operatorname{Ker}\, L + Y_p$ , where  $Y_p$  is some solution to the equation.

### **General Solution**

A solution involving some constants, where changing constants will yield all possible solutions.

### **Example**

Show  $y={\Bbb c}_1e^t+{\Bbb c}_2e^{-t}$  with  ${\Bbb c}_1,{\Bbb c}_2\in{\Bbb R}$ , is the general solution to y''-y=0

#### Solution

First, show that  $y = \mathbb{c}_1 e^t + \mathbb{c}_2 e^{-t}$  satisfies the given differential equation.

$$\text{Let } L=D^2-I\Rightarrow L[y]=\mathbb{c}_1L[e^t]+\mathbb{c}_2L[e^-t]=\mathbb{c}_1\big(e^t-e^t\big)+\mathbb{c}_2\big(e^{-t}-e^{-t}\big)=\mathbb{c}_1(0)+\mathbb{c}_2(0)=0$$

Next, we will show that there are no other solutions.

Let  $y_1$  be a solution to y'' - y = 0 where it satisfies the IVP:

$$\begin{cases} y'' - y = 0 \\ y(0) = y_1(0) \\ y'(0) = y'_1(0) \end{cases}$$

We will find some  $\mathbb{c}_1,\mathbb{c}_2$  such that  $y=\mathbb{c}_1e^t+\mathbb{c}_2e^{-t}$  also satisfies the IVP.

$$\begin{split} y_1(0) &= \mathbb{c}_1 + \mathbb{c}_2 \\ y_1'(0) &= \mathbb{c}_1 - \mathbb{c}_2 \\ y_1(0) + y_1'(0) &= 2\mathbb{c}_1 \\ y_1(0) - y_1'(0) &= 2\mathbb{c}_2 \\ \Rightarrow \mathbb{c}_1 &= \frac{y_1(0) + y_1'(0)}{2}, \mathbb{c}_2 = \frac{y_1(0) - y_1'(0)}{2} \end{split}$$

Therefore, for any  $y_1$ , where  $y_1$  is any solution y''-y=0,  $y={\mathbb C}_1 e^t+{\mathbb C}_2 e^{-t}$  can be that solution. Because it can represent any solution, and all solutions satisfy the differential equation,  $y={\mathbb C}_1 e^t+{\mathbb C}_2 e^{-t}$  is the general solution to y''-y=0

# Particular solution

Some solution to a differential equation.

# Find the General Solution to a linear differential equation

- 1. Find the general solution  $Y_H(t)$  to L[y]=0
- 2. Find a particular solution  $Y_p(t)$  to L[y] = f[t]
- 3. The general solution to L[y] = f[t] is Y\_H + Y\_p

# Find the general solution to homogenous linear equations

### **Example**

Find the general solution to y'' - 5y' + 4y = 0

#### Solution

First, because the coefficients are constant, assume a solution is in the form  $y=e^{\varepsilon t}$ .

$$y = e^{\mathfrak{c}t}, y' = \mathfrak{c}e^{\mathfrak{c}t}, y'' = \mathfrak{c}^2 e^{\mathfrak{c}t}$$

$$\Rightarrow \mathfrak{c}^2 e^{\mathfrak{c}t} - 5\mathfrak{c}e^{\mathfrak{c}t} + 4e^{\mathfrak{c}t} = 0$$

$$\Rightarrow (\mathfrak{c}^2 - 5\mathfrak{c} + 4)e^{\mathfrak{c}t} = 0$$

$$\Rightarrow \mathfrak{c}^2 - 5\mathfrak{c} + 4 = 0 \Rightarrow \mathfrak{c} \in \{1, 4\}.$$

$$\Rightarrow y = e^t, e^{4t} \text{ are solutions}$$

$$\therefore \text{ We claim } y = \mathfrak{c}_1 e^t + \mathfrak{c}_2 e^{4t} \text{ is a general solution.}$$

$$\text{Set } L=D^2-5D+4I.$$
 By linearity,  $L[\mathbb{c}_1e^t+\mathbb{c}_2e^{4t}]=0$  so  $\mathbb{c}_1e^t+\mathbb{c}_2e^{4t}$  is a solution.  
Let  $y_1$  be a solution.

To be a solution, it must fulfill the following IVP, which uniquely constrains it by the E & U theorem.

$$\begin{cases} L[y] = 0 \\ \mathbf{c}_1 + \mathbf{c}_2 = y_1(0) \\ \mathbf{c}_1 + 4\mathbf{c}_2 = y_1'(0) \end{cases}$$

We can find 
$$\mathbb{c}_1, \mathbb{c}_2$$
 such that they fulfill the IVP : 
$$\begin{cases} \mathbb{c}_1 = \frac{4y_1(0) - y_1'(0)}{3} \\ \mathbb{c}_2 = \frac{y_1'(0) + y_1(0)}{3} \end{cases}$$

Since we can generate all solutions, our solution is a general solution.

### Is this always the general solution?

$$\begin{split} y &= \mathbf{c}_1 e^{r_1 t} + \mathbf{c}_2 e^{r_2 t} + \dots + \mathbf{c}_n e^{r_n t} \\ &\Rightarrow \begin{cases} \mathbf{c}_1 + \mathbf{c}_2 + \dots + c_n &= y_0 \\ r_1 \mathbf{c}_1 + r_2 \mathbf{c}_2 + \dots + r_2 c_n &= y_1 \\ \vdots \\ r_1^{n-1} \mathbf{c}_1 + r_2^{n-1} \mathbf{c}_2 + \dots + r_2^{n-1} c_n &= y_1 \end{cases} \Rightarrow \\ \begin{pmatrix} 1 & \cdots & 1 \\ r_1 & \cdots & r_n \\ \vdots \\ r_1^{n-1} & \cdots & r_n^{n-1} \end{pmatrix} \begin{pmatrix} \mathbf{c}_1 \\ \vdots \\ \mathbf{c}_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \end{split}$$

# Dimension of the Solution Set for a Linear Equation

Suppose L[y]=0 is a nth order linear equation with continuous coefficients over an interval (a,b). Then, the solution set is an n-dimensional vector space.

### **Proof**

This solution set is Ker L, which is a subspace.

Fix  $t_0 \in (a, b)$ . Every solution y = Y to L[y] = 0 satisfies some IVP:

$$\begin{cases} L[y] = 0 \\ y(t_0) = Y(t_0) \\ \vdots \\ y^{(n-1)}(t_0) = Y^{(n-1)}(t_0) \end{cases}$$

Let  $N_i(t)$  be the solution to

$$\begin{cases} L[y] = 0 \\ y(t_0) = 0 \\ \vdots \\ y^{(j)}(t_0) = 1 \\ y^{(n-1)}(t_0) = 0 \end{cases}$$

Linear Independence:

$$\operatorname{Suppose} \sum_{j=0}^{n-1} \operatorname{c}_j N_j(t) = 0 \forall t \in (a,b)$$

Substitute  $t = t_0$ 

$$\sum \mathbb{c}_j N_k(t) = 0 \Rightarrow \mathbb{c}_0 N_0(t_0) + \dots + \mathbb{c}_{n-1} N_{n-1}(t_0) = 0 \Rightarrow \mathbb{c}_0 = 0 \text{ as } N_0(t_0) = 1, \text{and } N_j(t_0) = 0 \forall n = 1, \dots, n-1.$$

Then differentiate:  $\mathbf{c}_1 N_1'(t) + \dots + \mathbf{c}_{n-1} N_{n-1}'(t) = 0 \Rightarrow \mathbf{c}_1 = 0$ 

$$\mathbb{C}_0 = \mathbb{C}_1 = \dots = \mathbb{C}_{n-1} = 0$$

Spanning:

Let 
$$Y$$
 satisfy : 
$$\begin{cases} L[y] = 0 \\ y(t_0) = y_0 \\ \vdots \\ y^{(n-1)}(t_0) = y_{n-1} \end{cases}$$

Claim: 
$$Y(t) = y_0 N_0(t) + y_1 N_1(t) + \dots + y_{n-1} N_{n-1}(t)$$

$$L[Y] = L[y_0N_0(t) + y_1N_1(t) + \dots + y_{n-1}N_{n-1}(t)] =$$

$$y_0 L[N_0(t)] + y_1 L[N_1(t)] + \dots + y_{n-1} L[N_{n-1}(t)] =$$

$$y_0(0) + y_1(0) + \dots + y_{n-1}(0) = 0 \Rightarrow L[Y] = 0$$

$$Y^{(k)}(t_0) = y_0 N_0^{(k)}(t_0) + \dots + y_{n-1} N_{n-1}^k(t_0) = y_k$$
 if  $k=0,...,n-1$ 

Thus, by the existence and uniqueness theorem, the claim holds

∴ \_

# **Fundamental Set of Solutions**

A basis for  $\mathrm{Ker}(L[y])\text{, where }L[y]=D^n+a_n(t)D^{n-1}+\cdots+a_2(t)D+a_1(t)$ 

### **Natural Fundamental Set of Solutions**

Let  $N_i(t)$  be the solution to

$$\begin{cases} L[y] = 0 \\ y(t_0) = 0 \\ \vdots \\ y^{(j)}(t_0) = 1 \\ y^{(n-1)}(t_0) = 0 \end{cases}$$

The set  $\{N_0(t),N_1(t),...,N_{n-1}(t)\}$  is called the natural fundamental set of solutions.

# Example 7.4

Given that  $e^t$ ,  $e^2t$  are solutions to y'' - 3y' + 2y = 0, find the NFSOS at t = 0

## **Solution**

$$\begin{split} W[e^t,e^{2t}] &= \det \begin{pmatrix} e^t & e^{2t} \\ e^t & 2e^{2t} \end{pmatrix} = e^{4t} \neq 0 \\ \Rightarrow y &= \mathbbm{c}_1 e^t + \mathbbm{c}_2 e^{2t} \text{ is the general solution.} \\ \begin{cases} y'' - 3y' + 2y = 0 \\ y(0) &= y_0 \\ y'(0) &= y_1 \end{cases} \\ y &= \mathbbm{c}_1 e^t \mathbbm{c}_2 e^{2t} \Rightarrow \begin{cases} \mathbbm{c}_1 + \mathbbm{c}_2 &= y_0 \\ \mathbbm{c}_1 + 2\mathbbm{c}_2 &= y_1 \end{cases} \Rightarrow y = (2y_0 - y_1) e^t + (y_1 - y_0) e^2 t \\ &= y_0 (2e^t - e^{2t}) + y_1 (e^{2t} - e^t) \\ N_0 &= 2e^t - e^{2t}, N_1 = e^{2t} - e^t \text{ forms the NFSOS at } t = 0. \end{split}$$

# Wronskian

Suppose  $Y_1,...,Y_n$  are solutions to L[y]=0. When do these solutions form a fundamental set of solutions?

 $y_1=\mathbb{c}_1Y_1+\cdots+\mathbb{c}_nY_n$  has to be the general solution to L[y]=0. In other words, for every  $y_0,...,y_{n-1}$ , there must exist  $\mathbb{c}_1,...,\mathbb{c}_n$  such that

$$\begin{cases} \mathbb{c}_{1}Y_{1}(t_{0}) + \cdots + \mathbb{c}_{n}Y_{n}(t_{0}) = y_{0} \\ \mathbb{c}_{1}Y_{1}'(t_{0}) + \cdots + \mathbb{c}_{n}Y_{n}'(t_{0}) = y_{1} \\ \vdots \\ \mathbb{c}_{1}Y_{1}^{n-1}(t_{0}) + \cdots + \mathbb{c}_{n}Y_{n}^{n-1}(t_{0}) = y_{n-1} \end{cases}$$

$$\Rightarrow \begin{pmatrix} Y_{1}(t_{0}) & \cdots & Y_{n}(t_{0}) \\ Y_{1}'(t_{0}) & \cdots & Y_{n}'(t_{0}) \\ \vdots \\ \vdots \\ Y_{1}^{(n-1)}(t_{0}) & \cdots & Y_{n}^{(n-1)}(t_{0}) \end{pmatrix} \begin{pmatrix} \mathbb{c}_{1} \\ \mathbb{c}_{2} \\ \vdots \\ \mathbb{c}_{n} \end{pmatrix} = \begin{pmatrix} y_{0} \\ y_{1} \\ \vdots \\ y_{n-1} \end{pmatrix}$$

$$\text{ ... det} \begin{pmatrix} Y_1(t_0) & \cdots & Y_n(t_0) \\ Y_1'(t_0) & \cdots & Y_n'(t_0) \\ & \vdots & \\ Y_1^{(n-1)}(t_0) & \cdots & Y_n^{(n-1)}(t_0) \end{pmatrix} \neq 0 \Longleftrightarrow Y_1, ..., Y_n \text{ form a fundamental set of solutions.}$$

$$\text{The determinant}: W[Y_1,...,Y_n](t) = \det \begin{pmatrix} Y_1(t) & \cdots & Y_n(t) \\ Y_1'(t) & \cdots & Y_n'(t) \\ & \vdots & \\ Y_1^{(n-1)}(t) & \cdots & Y_n^{(n-1)}(t) \end{pmatrix} \text{ is called the Wronskian}$$

$$Y_1, ..., Y_n$$
 is a FSOS iff  $\exists t_0, W[Y_1, ..., Y_n](t_0) \neq 0$  iff  $\forall t, W[Y_1, ..., Y_n](t) \neq 0$ 

# **Generic Example**

We know  $t^2 - 1$  and t are solutions to  $(1 + t^2)y'' - 2ty' + 2y = 0$ . Find the general solution. Use that to find a solution satisfying y(0) = 2, y'(0) = 3.

### Solution

$$\begin{split} y'' - 2\frac{t}{1+t^2}y' + \frac{2}{1+t^2}y &= 0 \\ W[t^2 - 1, t] &= \det \binom{t^2 - 1}{2t} t = t^2 - 1 - 2t^2 = -1 - t^2 \neq 0 \\ \Rightarrow \text{ the general solution is } \boxed{y = \mathbf{c}_1(t^2 - 1) + \mathbf{c}_2 t} \\ \begin{cases} y(0) = 2 \\ y'(0) = 3 \end{cases} \Rightarrow \begin{cases} -\mathbf{c}_1 = 2 \\ \mathbf{c}_2 = 3 \end{cases} = \boxed{y(t) = -2(t^2 - 1) + 3t} \end{split}$$

# **Abel's Theorem**

Suppose W is the Wronskian of n solutions of to an nth order linear homogenous differential equation L[y]=0. Then,  $\frac{\mathrm{d}W}{\mathrm{d}t}+a_n(t)W=0$  where  $L=D^n+a_n(t)D^{n-1}+\cdots+a_2(t)D+a_1(t)I$ . Furthermore if  $\exists t_0,W(t_0)=0$ , then  $\forall t,W(t)=0$ .

### **Proof of the furthermore**

**IVP** 

$$\begin{cases} \frac{\mathrm{d}z}{\mathrm{d}t} + a_n(t)z = 0\\ z(t_0) = 0 \end{cases}$$

Then, this IVP has two solutions,  $z = 0, z = W : \forall t, W(t) = 0$ 

### Proof of the rest of the theorem

$$W(t) = \det \begin{pmatrix} Y_1(t) & \cdots & Y_n(t) \\ Y_1'(t) & \cdots & Y_n'(t) \\ \vdots \\ Y_1^{(n-1)}(t) & \cdots & Y_n'(t) \end{pmatrix}$$

$$\frac{\mathrm{d}W}{\mathrm{d}t} = \det \begin{pmatrix} Y_1'(t) & \cdots & Y_n'(t) \\ Y_1'(t) & \cdots & Y_n'(t) \\ \vdots \\ Y_1^{(n-1)}(t) & \cdots & Y_n'(t) \end{pmatrix} + \det \begin{pmatrix} Y_1(t) & \cdots & Y_{n'}(t) \\ Y_1''(t) & \cdots & Y_n''(t) \\ \vdots \\ Y_1^{(n-1)}(t) & \cdots & Y_n'(t) \end{pmatrix} + \cdots + \det \begin{pmatrix} Y_1(t) & \cdots & Y_{n'}(t) \\ Y_1''(t) & \cdots & Y_n''(t) \\ \vdots \\ Y_1^{(n)}(t) & \cdots & Y_n'(t) \\ \vdots \\ Y_1^{(n)}(t) & \cdots & Y_n''(t) \end{pmatrix}$$

$$= \det \begin{pmatrix} Y_1(t) & \cdots & Y_{n'}(t) \\ Y_1''(t) & \cdots & Y_n''(t) \\ \vdots \\ Y_1^{(n)}(t) & \cdots & Y_n''(t) \end{pmatrix}$$

Each  $Y_i$  satisfies this differential equation:

$$\begin{split} L[y] &= y^{(n)}(t) + a_n(t)y^{(n-1)}(t) + \dots + a_1(t)y(t) = 0 \\ &Y_j^{(n)} + a_n(t)Y_j^{(n-1)} + \dots + a_1(t)Y_j(t) = 0 \end{split}$$

Perform the following row additions:

$$R_n + a_1(t)R_1 + a_2(t)R_2 + \dots + a_{n-1}(t)R_{n-1} \to R_n$$

This should not change the determinant because row addition doesn't change determinants.

The jth entry of the last row becomes

$$\begin{split} Y_j^{(n)} + a_1(t)Y_j + a_2(t)Y_j' + \ldots + a_{n-1}(t)Y_j^{(n-2)} &= L[Y_j] - a_nY_j^{(n-2)} &= -a_n(t)Y_j^{(n-2)} \\ & \vdots \\ & \frac{\mathrm{d}W}{\mathrm{d}t} = \det \begin{pmatrix} Y_1(t) & \cdots & Y_n(t) \\ Y_1'(t) & \cdots & Y_n'(t) \\ \vdots & & \vdots \\ -a_n(t)Y_1^{(n-1)} & \cdots & -a_n(t)Y_n^{(n-1)} \end{pmatrix} &= -a_n(t) \det \begin{pmatrix} Y_1(t) & \cdots & Y_n(t) \\ Y_1'(t) & \cdots & Y_n'(t) \\ \vdots & \vdots \\ Y_1^{(n-1)} & \cdots & Y_n^{(n-1)} \end{pmatrix} &= -a_n(t)W \\ & \vdots \\ & \ddots & \frac{\mathrm{d}W}{\mathrm{d}t} + a_n(t)W &= 0 \end{split}$$

### **Example**

Suppose the Wronskian W of 3 solutions to the equation y'''-2ty''-y=0 satisfies W(0)=1. Find W(t)

$$\begin{split} y'''-2ty''-y&=0 => a_3(t)=-2t, a_2(t)=0, a_1(t)=-1\\ \text{By Abel's theorem } \frac{\mathrm{d}W}{\mathrm{d}t}-2tW=0\\ \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}\Big[e^{-t^2}W\Big]=0\\ e^{-t^2}W=\mathbb{c}_1\\ W=\mathbb{c}_1e^{t^2}\\ W(0)=1\Rightarrow \mathbb{c}_1=1\Rightarrow W=e^{t^2} \end{split}$$

Prove that if the Wronskian of one FSOS to  ${\cal L}[y]=0$  is constant, then the Wronskian of every FSOS is constant.

### Solution

If  $W_1, W_2$  are Wronskian corresponding to two FSOS

and 
$$W_1=\mathbb{c}_1$$
 then  $\frac{\mathrm{d}W_1}{\mathrm{d}t}+a_n(t)W_1=0\Rightarrow 0+a_n(t)\mathbb{c}_1=0$ 

 $\Rightarrow a_n(t) = 0$  because  $c_1$  is nonzero because the Wronskian is of an FSOS.

$$\Rightarrow \frac{\mathrm{d}W_2}{\mathrm{d}t} + 0W_2 = 0 \Rightarrow \frac{\mathrm{d}W_2}{\mathrm{d}t} = 0 \Rightarrow W_2 = \mathbb{c}_2.\square$$

# Theorem on the Wroskian's functioning

Suppose  $f_1,...,f_n:(a,b)\to\mathbb{R}$  are (n-1) times differentiable. Assume  $f_1,...,f_n$  are linearly dependent over (a,b). Then,  $W[f_1,...,f_n](t)=0$  for all  $t\in(a,b)$ .

### **Proof**

$$\exists \mathtt{c}_1,...,\mathtt{c}_n \in \mathbb{R} \text{ not all zero such that } \forall t \in (a,b)\mathtt{c}_1 f_1(t) + \cdots + \mathtt{c}_n f_n(t) = 0$$
 Differentiate  $(n-1)$  times 
$$\mathtt{c}_1 f_1'(t) + \cdots + \mathtt{c}_n f_n'(t) = 0$$
 
$$\vdots \mathtt{c}_1 f_1^{(n-1)}(t) + \cdots + \mathtt{c}_n f_n^{(n-1)}(t) = 0$$
 
$$\Rightarrow \begin{pmatrix} f_1(t) & \dots & f_n(t) \\ f_1'(t) & \dots & f_n'(t) \\ \vdots \\ f_1^{(n-1)}(t) & \dots & f_n'(t) \end{pmatrix} \begin{pmatrix} \mathtt{c}_1 \\ \vdots \\ \mathtt{c}_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$
 
$$\Rightarrow \begin{pmatrix} f_1(t) & \dots & f_n(t) \\ f_1'(t) & \dots & f_n(t) \\ \vdots \\ f_1^{(n-1)}(t) & \dots & f_n'(t) \end{pmatrix} = 0 \Rightarrow W[f_1, \dots, f_n](t) = 0$$

# **Chapter 8: Linear Equations with Constant Coefficients**

$$L = D^n + a_n D^{n-1} + \dots + a_2 D + a_1 I$$
 
$$a_1, \dots, a_n \in \mathbb{R} \text{ (constant)}$$

### **Example**

Find the general solution to y'' + 7y' + 12y = 0.

#### Solution

$$\text{Assume } y = e^{\lambda t} \Rightarrow y' = \lambda e^{\lambda t} \Rightarrow y'' = \lambda^2 e^{\lambda t}$$
 
$$\Rightarrow \lambda^2 e^{\lambda t} + 7\lambda e^{\lambda t} + 12e^{\lambda t} = 0 \Rightarrow \lambda^2 + 7\lambda + 12 = 0 \Rightarrow (\lambda + 3)(\lambda + 4) = 0$$
 
$$\lambda = -3, -4 \Rightarrow e^{-3t} \text{ and } e^{-4t} \text{ are solutions}$$
 
$$W[e^{-3t}, e^{-4t}] = \det \begin{pmatrix} e^{-3t} & e^{-4t} \\ -3e^{-3t} & -4e^{-4t} \end{pmatrix} = -e^{-7t} \neq 0$$
 
$$\therefore \boxed{y = \mathbb{c}_1 e^{-3t} + \mathbb{c}_2 e^{-4t} }$$

# **Example**

Find the general solution to:

$$y''' + 2y'' - y' - 2y = 0$$

### **Solution**

Let  $y = e^{zt}$ .

$$\begin{split} y' &= ze^{zt} \\ y' &= z^2 = e^{zt} \\ y'' &= z^3e^{zt} \\ \Rightarrow z^3 + 2z^2 - z - 2 = 0 \Rightarrow (z-1)(z+1)(z+2) = 0 \\ z &= 1, -1, -2 \Rightarrow y = \left\{e^t, e^{-t}, e^{-2t}\right\} \text{ are solutions} \\ W[e^t, e^{-t}, e^{-2t}] &= \det \begin{pmatrix} e^t & e^{-t} & e^{-2t} \\ e^t & -e^{-t} & -2e^{-2t} \\ e^t & e^{-t} & 4e^{-2t} \end{pmatrix} = e^t \cdot e^{-t} \cdot e^{-2t} \det \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -2 \\ 1 & 1 & 4 \end{pmatrix} \\ &= e^{-2t} \det \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -2 \\ 1 & (-1)^2 & (-2)^2 \end{pmatrix} \overset{\text{Vantermonte Determinant}}{=} e^{-2t} \dots \div \neq 0 \\ &\text{Then, by a theorem, } y = \mathbb{c}_1 e^t + \mathbb{c}_2 e^{-t} + \mathbb{c}_3 e^{-2t} \end{split}$$

# **Definition of Characteristic Polynomial**

$$p(z)=z^n+a_nz^{n-1}+\cdots+a_2z+a_1 \text{ is called the characteristic polynomial}$$
 
$$L=D^n+a_nD^{n-1}+\cdots+a_2D+a_1I$$
 
$$a_1,\ldots,a_n\in\mathbb{R} \text{ (constant)}$$

# **Linear Independence of Exponentials**

Given distinct complex numbers  $z_1,...,z_n$ , the functions  $e^{z_1t},...,e^{z_nt}$  are <u>linearly independent</u>.

### **Proof**

If  $W[e^{z_1t},...,e^{z_nt}] \neq 0$  for some  $t \in \mathbb{R}$  then  $e^{z_1t},...,e^{z_nt}$  are <u>linearly independent</u>.

$$W[e^{z_1t}, \cdots, e^{z_nt}] = \det \begin{pmatrix} e^{z_1t} & \cdots & e^{z_nt} \\ z_1e^{z_1t} & \cdots & z_ne^{z_nt} \\ & \vdots & \\ z_1^{n-1}e^{z_1t} & \cdots & z_n^{n-1}e^{z_nt} \end{pmatrix}$$

$$= e^{z_1 + \dots + z^n} t \det \begin{pmatrix} 1 & z_1 & \dots & z_1^{n-1} \\ 1 & z_2 & \dots & z_2^{n-1} \\ & \vdots & \\ 1 & z_n & \dots & z_n^{n-1} \end{pmatrix} = e^{z_1 + \dots + z^n} t \prod_{n \geq j \geq k \geq 1} (z_j - z_k) \neq 0 \text{ because } z_j \neq z_k$$

# Proof 2, electric boogalo

By induction on n

Basis step:

:

Inductive Step:

Assume  $z_1, ..., z_{n+1}$  are distinct.

Suppose 
$$\sum_{j=1}^{n+1} \mathbb{c}_j e^{z_j t} = 0$$
 for some  $\mathbb{c}_1,...,\mathbb{c}_{n+1} \in \mathbb{C}$ 

By differentiation  $\mathbb{C}_1 z_1 e^{z_1 t} + \dots + \mathbb{C}_n z_n e^{z_n t} + \mathbb{C}_{n+1} z_{n+1} e^{z_{n+1} t}$ 

$$\sum_{j=1}^{n+1} \mathbb{c}_j e^{z_j t} - \left( \mathbb{c}_1 z_1 e^{z_1 t} + \dots + \mathbb{c}_n z_n e^{z_n t} + \mathbb{c}_{n+1} z_{n+1} e^{z_{n+1} t} \right) = 0 - 0$$

$$\begin{split} \mathbb{c}_1 \big( z_{n+1} - z_1 \big) e^{z_1 t} + \cdots + \mathbb{c}_n \big( z_{n+1} - z_n \big) e^{z_n t} + \mathbb{c}_{n+1} \big( z_{n+1} - z_{n+1} \big) e^{z_{n+1} t} &= 0 \\ \mathbb{c}_1 \big( z_{n+1} - z_1 \big) e^{z_1 t} + \cdots + \mathbb{c}_n \big( z_{n+1} - z_n \big) e^{z_n t} &= 0 \end{split}$$

By the inductive hypothesis,

$$\mathbb{c}_1\big(z_{n+1}-z_1\big)=\cdots=\mathbb{c}_n\big(z_{n+1}-z_n\big)=0$$

Since 
$$\forall j, z_{n+1} \neq z_j \Rightarrow \mathbb{c}_1 = \dots = \mathbb{c}_n = 0$$

$$\therefore \sum_{j=1}^{n+1} c_j e^{z_j t} = c_{n+1} e^{z_{n+1} t} = 0$$

$$\Rightarrow \mathbb{c}_{n+1} = 0 \square$$

### **Example**

Solve the equation y'' + 2y' + 2y = 0

$$L = D^2 + 2D + 2I$$

$$z^2 + 2z + 2 \Rightarrow (z+1)^2 + 1 = 0 \rightarrow -1 \pm i$$

$$y = e^{(-1-i)t}, e^{(-1+i)t} \text{ are solutions}$$

$$L\left[e^{(-1+i)t}\right] = 0$$

$$L\left[e^{-t}(\cos(t) + i\sin(t))\right] = 0$$

$$L\left[e^{-t}\cos(t)\right] + L\left[e^{-t}i\sin(t)\right] = 0$$

$$L\left[e^{-t}\cos(t)\right] + iL\left[\sin(t)\right] = 0$$

$$L\left[e^{-t}\cos(t)\right] + iL\left[e^{-t}\sin(t)\right] = 0$$

$$L\left[e^{-t}\cos(t)\right] = 0$$

$$L\left[e^{-t}\sin(t)\right] = 0$$

Since  $e^{-t}\cos(t)$  and  $e^{-t}\sin(t)$  are not scalar multiples, they are <u>linearly independent</u> and the general solution is:

$$\boxed{y=\mathbb{c}_1e^{-t}\cos(t)+\mathbb{c}_2e^{-t}\sin(t).}$$

In general if  $a\pm b$  is a root of the characteristic polynomial,  $a,b\in\mathbb{R}$  then

$$L\big[e^{at}\cos(bt)\big]=0$$

$$L[e^{at}\sin(bt)] = 0$$

# **Example**

Solve 
$$y''' + 2y'' + y' = 0$$

$$\Rightarrow z^{3} + 2z^{2} + z = 0$$

$$\Rightarrow z(z^{2} + 2z + 1) = 0$$

$$\Rightarrow z(z + 1)^{2} = 0$$

$$\Rightarrow z = 0, -1, -1$$

$$e^{0t}, e^{-t}, e^{-t} \text{ are solutions}$$

but this is not enough, because  $e^{-t}$  is linearly dependent with  $e^{-t} \Rightarrow$  we need one more solution

$$p(z) = (z+1)^{2} + 2z(z+1)$$

$$P(-1) = 0, p'(-1) = 0$$

$$\left(D = \frac{d}{dt}\right)$$

$$(D^{3} + 2D^{2} + D)[e^{zt}] = (z^{3} + 2z^{2} + z)e^{zt}$$

We will differentiate both sides with respect to z:

$$\frac{\partial}{\partial z}D = D\frac{\partial}{\partial z} \text{ by Clairaut's Theorem}$$

$$\frac{\partial}{\partial z}(D^3 + 2D^2 + D)[e^{zt}] = \frac{\partial}{\partial z}((z^3 + 2z^2 + z)e^{zt})$$

$$(D^3 + 2D^2 + D)[te^{zt}] = (3z^2 + 4z + 1)e^{zt} + (z^3 + 2z^2 + z)te^{zt}$$

$$z = -1 \Rightarrow$$

$$(D^3 + 2D^2 + D)[te^{-t}] = 0$$

$$\Rightarrow y = 1, e^{-t}, te^{-t}$$

Apply the Wronskian or apply the definition of linear independence.

:  $y = 1, e^{-t}, te^{-t} \text{ are } \underline{\text{linearly independent}} \Rightarrow y = \mathbb{c}_1 + \mathbb{c}_2 e^{-t} + \mathbb{c}_3 t e^{-t}$ 

# Key Identities (Showing why n repeated roots)

$$P(D)[t^n e^{zt}] = \sum_{k=0}^n \binom{n}{k} p^{(n-k)}(z) t^k e^{zt}.$$

### **Proofish**

Suppose 
$$L(y)=D^n+a_nD^{n-1}+\cdots+a_2D+a_1I=p(D), a_j\in\mathbb{R}$$
 
$$\forall z\in\mathbb{C}, t\in\mathbb{R}, L\big[e^{zt}\big]=p(z)e^{zt}$$
 Since  $D\frac{\partial}{\partial z}=\frac{\partial}{\partial z}D$  
$$P(D)\big[e^{zt}\big]=p(z)e^{zt}$$

take the derivative with respect to z:

$$\begin{split} P(D)\frac{\partial}{\partial z} \big[ e^{zt} \big] &= \frac{\partial}{\partial z} p(z) e^{zt} \\ P(D) \big[ t e^{zt} \big] &= p'(z) e^{zt} + p(z) t e^{zt} \end{split}$$

take the derivative with respect to z:

$$\begin{split} P(D)\big[t^2e^{zt}\big] &= p''(z)e^{zt} + p'(z)te^{zt} + p'(z)te^{zt} + p(z)t^2e^{zt} \\ P(D)\big[t^2e^{zt}\big] &= p''(z)e^{zt} + 2p'(z)te^{zt} + p(z)t^2e^{zt} \\ P(D)\big[t^3e^{zt}\big] &= p'''(z)e^{zt} + 3p''(z)te^{zt} + 3p'(z)t^2e^{zt} + p(z)t^3e^{zt} \end{split}$$

Via induction on n can prove:

$$P(D)[t^n e^{zt}] = \sum_{k=0}^n \binom{n}{k} p^{(n-k)}(z) t^k e^{zt}.$$

# **Definition of multiplicity**

We say  $c \in C$  is a root of a polynomial p(z) with multiplicity m if  $p(z) = (z-c)^m q(z)$ , where q(z) is a polynomial and  $q(c) \neq 0$ .

# Theorem on multiplicity after derivatives

Suppose c is a root of the polynomial p(z). Then c has multiplicity m iff  $p(c)=p'(c)=\cdots=p^{(m-1)}(c)=0$  and  $p^{(m)}(c)\neq 0$ .

#### **Proofish**

Start with 
$$p(z) = (z - c)^m q(z)$$
  
 $p'(z) = m(z - c)^{m-1} q(z) + (z - c)^m q'(z)$   
 $= (z - c)^{m-1} \underbrace{(mq(z) + (z - c)q'(z))}_{\text{not zero at } c, \text{ just another q}}$   
 $\vdots$   
 $(p - z)^0 \Rightarrow 1 \text{ so no longer works}$ 

# Zero derivatives from repeated roots

Suppose c is a root of multiplicity m of p(z) then  $P(D)[e^{ct}] = P(D)[e^{ct}] = P(D)[te^{ct}] = \cdots = P(D)[t^{m-1}e^{ct}] = 0$ .

# Theorem to find solutions of differential equation

Real roots r with multiplicity  $m \rightarrow e^{rt}, te^{rt}, ..., t^{m-1}e^{rt}$  ,

Non-real roots a+bi with multiplicity  $m \to e^{at}\cos(bt), e^{at}\sin(bt), ..., t^{m-1}e^{at}\cos(bt), t^{m-1}e^{at}\sin(bt)$ 

$$L=P(D),p(z)=0$$

- 1. Find all roots of p(z)
- 2. For every real root r with multiplicity m consider  $e^{rt}$ ,  $te^{rt}$ , ...,  $t^{m-1}e^{rt}$
- 3. For every pair of non-real roots  $a \pm bi$  with multiplicity m consider  $e^{at}\cos(bt), e^{at}\sin(bt), \dots, t^{m-1}e^{at}\cos(bt), t^{m-1}e^{at}\sin(bt)$
- 4. Take a linear combination out of those considered for your solution.

### **Example**

Solve each of these equations:

1. 
$$y'''' + 6y'' + 9y = 0$$
  
2.  $(D^2 + I)^2 (D - I)^3 Dy = 0$ 

### Solution

### **Equation 1**

$$p(z) = z^4 + 6z^2 + 9 = \left(z^2 + 3\right)^2 \Rightarrow z = \pm \sqrt{3}i \text{ with multiplicity 2}$$
 by the theorem,  $y = \mathbb{c}_1 \cos\left(\sqrt{3}t\right) + \mathbb{c}_2 \sin\left(\sqrt{3}t\right) + \mathbb{c}_3 t \cos\left(\sqrt{3}t\right) + \mathbb{c}_4 t \sin\left(\sqrt{3}t\right)$ 

### **Equation 2**

$$p(z) = (z^2 + 1)^2 (z - 1)^3 z$$
 $z = \pm i \text{ multiplicity } 2$ 
 $= 1 \text{ multiplicity } 3$ 
 $= 0 \text{ multiplicity } 0$ 
 $y = \mathfrak{c}_1 \cos(t) + \mathfrak{c}_2 \sin(t) + \mathfrak{c}_3 t \cos(t) + \mathfrak{c}_4 t \sin(t) + \mathfrak{c}_5 e^t + \mathfrak{c}_6 t e^t + \mathfrak{c}_7 t^2 e^t + \mathfrak{c}_8 t e^t + \mathfrak{c}_$ 

## **Reduction of Order**

Suppose a linear equation L(t)[y]=0 has a solution  $y_0$ . Then, the reduction of order may be used to reduce the order of this equation by setting  $y(t)=y_0(t)v(t)$ 

# **Example**

We know 
$$e^t$$
 to  $y'' - 2y' + y = 0$ 

### Solution

We will find the second solution by the method of reduction of order.

$$\begin{split} y_0 &= e^t \Rightarrow y = e^t v(t) \Rightarrow y' = e^t v(t) + e^t + v'(t) \Rightarrow y'' = e^t v(t) + 2e^t v'(t) + e^t v''(t) \\ &\Rightarrow e^t v(t) + 2e^t v'(t) + e^t v''(t) - 2\big(e^t v(t) + e^t + v'(t)\big) + e^t v(t) \\ &= e^t v'' = 0 \Rightarrow v'' = 0 \Rightarrow v = t \text{ is a solution} \\ &\Rightarrow te^t \text{ is also a solution} \end{split}$$

Given y=t is a solution to  $t^2y''-t(t+2)y'+(t+2)y=0$  with t>0, find the general solution.

### Solution

We will use the method of reduction of order.

$$\begin{split} y_0 &= t \\ y &= tv(t) \Rightarrow \\ y' &= v(t) + tv'(t) \\ y'' &= 2v'(t) + v''(t) + tv(t) \\ v''t^3 + v'(2t^2 + t(-t(t+2))) + v(-t(t+2) + t(t+2)) = 0 \\ \Rightarrow v''t^3 + v'(-t^3) = 0 \Rightarrow v'' = v' \Rightarrow e^t \text{ is a solution } \Rightarrow y = \mathbb{c}_1 t + \mathbb{c}_2 t e^t \end{split}$$

# **Method of Undetermined Coefficients**

We need to find a particular solution  $Y_p$  such that  $L[Y_p] = f(t)$ .

Suppose the forcing is  $f(t)=g(t)e^{at}\cos(bt)+h(t)e^{at}\sin(bt)$  where g and h are polynomials. Let d be the largest degree of g and h. Let L=p(D) and m be the multiplicity of a+bi as a root of p(z). (i.e.  $p^{(k)}(a+bi)=0$  for k=0,...,m-1. If  $p(a+bi)\neq 0,m=0$ .) We write the Key Identities starting from the mth derivative.

$$L[t^m e^{zt}] = p^{(m)}(z)e^{zt} + \binom{m}{1}p^{(m-1)}(z)e^{zt} + \cdots$$
 
$$L[t^{m+1}e^{zt}] = p^{(m+1)}(z)e^{zt} + \binom{m+1}{1}p^{(m)}(z)te^{zt} + \binom{m+1}{2}p^{(m-1)}(z)e^{zt} + \cdots$$
 
$$\vdots$$
 
$$L[t^{m+d}e^{zt}] = p^{(m+d)}(z)e^{zt} + \cdots + \binom{m+d}{d}p^{(m)}(z)t^de^{zt} + \binom{m}{1}p^{(m-1)}(z)e^{zt} + \cdots$$
 So you will gather polynomials of degrees  $0, 1, ..., d \times e^{zt}$  By an exercise, we can get any polynomial of degree  $\leq d \times e^{zt}$ .

In sum.

$$Y_{n} = t^{m} (A_{0} + A_{1}t + \dots + A_{d}t^{d})e^{at}\cos(bt) + t^{m} (B_{0} + B_{1}t + \dots + B_{d}t^{d})e^{at}\sin(bt)$$

then just solve for the coefficients via Key Identities.

### **Example**

Find a particular solution to  $y'' + 2y = e^{5t}$ 

$$\begin{split} L &= D^2 + I, p(z) = z^2 + 2 \\ L\big[e^{5t}\big] &= p(5)e^{5t} = \left(5^2 + 2\right)e^{5t} = 27e^{5t} \\ \Rightarrow Y_p &= \frac{1}{27}e^{5t}Y_h = \mathbb{c}_1\cos\left(\sqrt{2}t\right) + \mathbb{c}_2\sin\left(\sqrt{2}t\right) \\ \therefore y &= \frac{1}{27}e^{5t} + \mathbb{c}_1\cos\left(\sqrt{2}t\right) + \mathbb{c}_2\sin\left(\sqrt{2}t\right) \end{split}$$

Find a particular solution for  $y'' - 6y' + 9y = 4e^{3t}$ 

### **Solution**

$$\begin{split} p(z) &= z^2 - 6z + 9 = (z-3)^2, L = p(D) \\ & \text{Key Identities:} \\ L[e^{3t}] &= p(3)e^{3t} = 0 \text{ not helpful} \\ L[te^{3t}] &= p(3)te^{3t} + p'(3)e^{3t} = 0 \text{ not helpful} \\ L[t^2e^{3t}] &= p(3)t^2e^{3t} + 2p'(3)te^{3t} + p''(3)e^{3t} = 2e^{3t} \\ &\Rightarrow Y_p = 2t^2e^{3t} \end{split}$$

### **Example**

Find a particular solution for  $y'' + 2y' + 10y = \cos(2t)$ 

### Solution

$$p(z) = z^2 + 2z + 10, L = p(D)$$

Since the forcing is  $\cos(2t) = \text{Re}(e^{2it})$ , we sub z = 2i n the Key Identities.

**Key Identities:** 

$$\begin{split} L[e^{2it}] &= p(2i)e^{2it} = (6+4i)e^{2it} \\ & \therefore L\left[\frac{e^{2it}}{6+4i}\right] = e^{2it} \Rightarrow L\left[\operatorname{Re}\left(\frac{e^{2it}}{6+4i}\right)\right] = \operatorname{Re}(e^{2it}) \\ &= \cos(2t) \Rightarrow Y_p = \operatorname{Re}\left(\frac{e^{2it}}{6+4i}\right) = \operatorname{Re}\left(\frac{(6-4i)e^{2it}}{36+16}\right) = \operatorname{Re}\left(\frac{6\cos(2t) + 4\sin(2t) + i(\ldots)}{52}\right) \\ &\Rightarrow Y_p = \frac{3\cos(2t) + 2\sin(2t)}{26} \end{split}$$

### **Example**

Find a particular solution for  $y'' + 2y' + 10y = 4te^{2t}$ 

$$\begin{split} p(z) &= z^2 + 2z + 10, L = p(D) \\ z &= 2 \text{ from the forcing} \\ \text{Key Identities:} \\ L[e^{2t}] &= p(2)e^{2t} = 18te^{2t} \\ L[te^{2t}] &= p(2)te^{2t} + p'(2)e^{2t} = 18te^{2t} + 6e^{2t} \\ \therefore L[te^{2t}] &- \frac{1}{3}L[e^{2t}] = 6e^{2t} + 18te^{2t} - 6e^{2t} = 18te^{2t} = 18te^{2t} \\ \frac{L[te^{2t}] - \frac{1}{3}L[e^{2t}]}{18} \cdot 4 = 4te^{2t} \\ \Rightarrow Y_p &= \frac{2}{9}te^{2t} - \frac{2}{27}e^{2t} \end{split}$$

Find a particular solution for  $y'' + y = \sin t + t$ 

# **Solution**

$$p(z) = z^2 + 1, L = p(D)$$
$$y'' + y = \underbrace{\sin t}_{z=i} + \underbrace{t}_{z=0}$$

since z = i is a simple root of p(z) the first Key Identity does not help.

$$\begin{split} L[te^{it}] &= \underline{p(i)te^{it^0}} + p'(i)e^{it} = 2ie^{it} \\ L\left[\frac{te^{it}}{2i}\right] &= L\left[\operatorname{Im}\left(\frac{te^{it}}{2i}\right)\right] = \sin(t) \Rightarrow L\left[\frac{-t\cos t}{2}\right] = \sin(t) \\ z &= 0: \\ L[1] &= p(0)e^{0t} = p(0) = 1 \\ L[t] &= p(0)te^{0t} + p'(0)e^{0t} = t \\ &\Rightarrow L\left[\frac{-t\cos t}{2}\right] = \sin(t), L[t] = t \\ \Rightarrow L\left[t - \frac{t\cos t}{2}\right] = \sin(t) + t: \boxed{Y_p = t - \frac{t\cos t}{2}} \end{split}$$

# Example using the theorem

Find a particular solution using the method of undetermined coefficients.

1. 
$$y'' + 4t = t\cos(2t)$$

2. 
$$y' - 6y' + 9y = 4e^{3t}$$

3. 
$$y' + 2y' + 10y = 5e^{-t}\sin(3t)$$

4. 
$$y'' + 3y' - 4y = 2\sin(t)\cos(3t)$$

# Solution

For 1:

$$\begin{split} a &= 0, b = 2, p(z) = z^2 + 4, d = 1 \\ p(2i) &= 0, p'(2i) = 4i \Rightarrow m = 1 \\ Y_p &= t(A_0 + A_1 t)e^{0t}\cos(2t) + t(B_0 + B_1 t)e^{0t}\sin(2t) \\ &= A_0 t\cos(2t) + A_1 t^2\cos(2t) + B_0 t\sin(2t) + B_1 t^2\sin(2t) \end{split}$$

substitute into the equation and set the coefficients equal to 0 and solve the system.

:

For 2:

$$\begin{split} p(z) &= z^2 - 6z + 9 = (z - 3), a + bi = 3, m = 2, d = 0 \\ &Y_p = t^2(A_0)e^{3t} \\ &Y'_p = A_0t^2 \cdot 3e^{3t} + 2A_0t \cdot e^{3t} \\ &Y''_p = 6A_0te^{3t} + 9A_0t^2e^{3t} + 2A_0e^{3t} + 6A_0te^{3t} \\ &Y''_p - 6Y'_p + 9Y_p = e^{3t}(2A_0) + \cdots \\ &\Rightarrow A_0 = 2 \\ &Y_p = 2t^2e^{3t} \end{split}$$

For 3:

$$p(z)=z^2+2z+10; a+bi=1+3i, d=0, m=1$$
 
$$Y_p=tA_0e^{-t}\cos(3t)+tB_0e^{-t}\sin(3t);$$

For 4:

We will have to convert  $2\sin(t)\cos(3t)$  to a sum

$$2\sin(t)\cos(3t)$$

$$= 2\frac{e^{it} - e^{-it}}{2i} \frac{e^{i3t} + e^{-i3t}}{2}$$

$$= \frac{e^{it} - e^{-it}}{2i} (e^{i3t} + e^{-i3t})$$

$$= -\frac{e^{-4it}}{2i} + \frac{e^{-2it}}{2i} - \frac{e^{2it}}{2i} + \frac{e^{4it}}{2i}$$

$$= \sin(4t) - \sin(2t)$$

Find  $Y_p$  by forcing  $\sin(4t)$  and  $\sin(2t)$  separately

# **Variation of Parameters**

L[y] = 0 has a known FSoS  $Y_1, ..., Y_n$ .

Objective: find a particular solution for L[y] = f(t)

$$\begin{split} Y_p &= u_1 Y_1 + \dots + u_n Y_n \text{ where } u_1, \dots, u_n \text{ are functions of } t \\ Y'_p &= u_1 Y'_1 + \dots + u_n Y'_n + \underbrace{u'_1 Y_1 + \dots + u'_n Y_n}_{\text{Let this be 0 hopefully}} \\ Y''_p &= u_1 Y''_1 + \dots + u_n Y''_n + \underbrace{u'_1 Y'_1 + \dots + u'_n Y'_n}_{0} \\ &\vdots \\ Y_p^{(n-1)} &= u_1 Y_1^{(n-1)} + \dots + u_n Y_n^{(n-1)} + \underbrace{u'_1 Y_1^{(n-2)} + \dots + u'_n Y_n^{(n-2)}}_{0} \\ Y_p^{(n)} &= u_1 Y_1^{(n)} + \dots + u_n Y_n^{(n)} + u'_1 Y_1^{(n-1)} + \dots + u'_n Y_n^{(n)} \\ L[Y_p] &= u_1 L[Y_1] + u_2 L[Y_2] + \dots + u_n L[Y_n] + u'_1 Y_1^{(n-1)} + \dots + u'_n Y_1^{(n-1)} = f(t) \\ \begin{cases} u'_1 Y_1 + \dots + u'_n Y_n = 0 \\ u'_1 Y'_1 + \dots + u'_n Y'_n = 0 \end{cases} \\ \vdots \\ u'_1 Y_1^{(n-2)} + \dots + u'_n Y_n^{(n-2)} = 0 \\ u'_1 Y_1^{(n-1)} + \dots + u'_n Y_n^{(n-1)} = f(t) \end{cases} \\ \begin{pmatrix} Y_1 & \dots & Y_n \\ Y'_1 & \dots & Y_n \\ Y'_1 & \dots & Y'_n \\ \vdots \\ u'_n \end{pmatrix} \begin{pmatrix} u'_1 \\ \vdots \\ u'_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ f(t) \end{pmatrix} \end{split}$$

Note we only need one ntuple  $(u_1, ..., u_n)$ 

#### **Example**

Find a solution for  $y'' + y = \tan(t)$ 

#### Solution

Make sure the equation is in standard form  $Y_1=\cos(t), Y_2=\sin(t)$ 

$$\begin{split} Y_p &= u_1 \cos(t) + u_2 \sin(t) \\ \Rightarrow \begin{cases} u_1' \cos(t) + u_2' \sin(t) = 0 \\ -u_1' \sin(t) + u_2' \cos(t) = \tan(t) \end{cases} \end{split}$$

# **Chapter 9: Power Series Solutions**

### The Idea

$$y'' + p(t)y' + q(t)y = 0$$
 Write 
$$y = \sum_{n=0}^{\infty} a_n (t - t_0)^n \qquad (*)$$

Substitute  $y, y', y'', y'', then obtain a recursion <math>a_n$ Solve for  $a_n$  If we know a/all solution of the form (\*) exists, then we are done.

If can show (\*) converges, then (\*) would be a solution.

## **Analytic**

$$f(t)$$
 is analytic at  $t_0$  if  $f(t)=\sum_{n=0}^{\infty}a_n(t-t_0)^n\exists R>0 \forall t\in (t_0-R,t_0+R)$ 

# Composition of analytic functions via addition, multiplication, and division

Suppose f(t) and g(t) are analytic at  $t=t_0$ . Then the functions f(t)+g(t) and f(t)g(t) are also analytic at  $t=t_0$ . Furthermore, if  $g(t_0)\neq 0$ , then  $\frac{f(t)}{g(t)}$  is analytic at  $t_0$ .

## **Ordinary Point**

A point  $t_0$  is said to be an ordinary point for the equation y''+p(t)y'+q(t)y=0 if p(t) and q(t) are analytic functions at  $t_0$ . If the equation is not in normal form but can be written in normal form in such a way that the coefficients are analytic at  $t=t_0$ , we still call  $t_0$  an ordinary point of the equation.

## Theorem for showing that an answer is analytic

Suppose p(t) and q(t) are analytic at  $t_0$ . Then every solution to the equation y'' + p(t)y' + q(t)y = 0 is analytic at  $t_0$ . Furthermore, the radius of convergence of the Taylor series of each solution centered at  $t_0$  is at least the minimum of the radii of convergence of Taylor series p(t) and q(t) centered at  $t_0$ .

## **Example**

Solve 
$$y'' - ty = 0$$

#### Solution

0 and -t are analytic with radii of convergence  $\infty$ . By the previous theorem, every solution is analytic.

$$y = \sum_{n=0}^{\infty} a_n t^n$$

$$y' = \sum_{n=1}^{\infty} n a_n t^{n-1}$$

$$y''' = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2}$$

$$ty \Rightarrow \sum_{n=0}^{\infty} a_n t^{n+1} \stackrel{n=n-1}{=} \sum_{n=1}^{\infty} a_{n-1} t^n$$

$$y''' = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} \stackrel{n=n+2}{=} \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} t^n y'' - ty = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} t^n - \sum_{n=1}^{\infty} a_{n-1} t^n$$

$$= (0+2)(0+1)a_{0+2} t^0 + \sum_{n=1}^{\infty} (n+2)(n+1)a_{n+2} t^n - \sum_{n=1}^{\infty} a_{n-1} t^n$$

$$= 2a_2 + \sum_{n=1}^{\infty} ((n+2)(n+1)a_{n+2} - a_{n-1}) t^n = 0$$

$$\Rightarrow a_2 = 0 \land (n+2)(n+1)a_{n+2} = a_{n-1} \forall n \geq 1$$

$$a_2 = 0$$

$$a_{n+2} = \frac{a_{n-1}}{(n+2)(n+1)}$$

$$a_3 = \frac{a_0}{3 \times 2}$$

$$a_4 = \frac{a_1}{4 \times 3}$$

$$a_5 = \frac{a_2}{5 \times 4} = 0$$

$$a_6 = \frac{a_3}{6 \times 5} = \frac{a_0}{6 \times 5 \times 3 \times 2}$$

$$a_7 = \frac{a_4}{7 \times 6} = \frac{a_0}{7 \times 6 \times 4 \times 3}$$

$$a_8 = \frac{a_5}{8 \times 7} = 0$$

$$Claim:$$

$$a_{3n} = \frac{a_{3n+1}}{(3n)(3n-1)(3n-3)(3n-4)(3n-6)(3n-7) \cdots \times 3 \times 2}$$

$$a_{3n+2} = 0$$

$$\vdots \text{ prove by induction}$$
Therefore, the general solution is

$$y = \sum_{n=0}^{\infty} (a_3 n) t^{3n} + \sum_{n=0}^{\infty} a_{3n+1} t^{3n+1}$$

## Example

Solve 
$$y'' + t^2y' + 2ty = 0, y(0) = 1, y'(0) = 0.$$

## Solution

 $t^2$  and 2t are analytic with a radius of convergence of  $\infty$ . Thus, the solution to this IVP (which is unique by the existence and uniqueness theorem for linear equations) is also analytic with a radius of convergence  $\infty$ .

$$y = \sum_{n=0}^{\infty} a_n t^n$$

$$y' = \sum_{n=1}^{\infty} n(n-1)a_n t^{n-2}$$

$$y'' = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^n$$

$$t^2y' = \sum_{n=1}^{\infty} na_n t^{n+1} = \sum_{n=2}^{\infty} (n-1)(a_{n-1})t^n$$

$$2ty = \sum_{n=0}^{\infty} 2a_n t^{n+1} = \sum_{n=1}^{\infty} 2a_{n-1}t^n$$

$$y'' + t^2y' + 2ty =$$

$$2a_2 + 6a_3t + 2a_0t + \sum_{n=2}^{\infty} ((n+2)(n+1)a_{n+2} + (n-1)a_{n-1} + 2a_{n-1})t^n$$

$$\begin{cases} 2a_2 = 0 \\ 6a_3 + 2a_0 = 0 \\ (n+2)(n+1)a_{n+2} + (n+1)a_{n-1} = 0 \forall n \geq 2 \end{cases}$$

$$\begin{cases} a_2 = 0 \\ a_3 = -\frac{a_0}{3} \Rightarrow \\ a_{n+2} = -\frac{a_{n-1}}{n+2} \end{cases}$$

$$a_4 = -\frac{a_1}{4} \xrightarrow{\text{by initian conditions}} 0$$

$$a_5 = -\frac{a_2}{5}$$

$$a_6 = -\frac{a_3}{6} = \frac{a_0}{6 \times 3}$$

$$a_7 = -\frac{a_4}{7} = 0$$

$$a_8 = -\frac{a_5}{8} = 0$$

$$a_9 = -\frac{a_6}{9} = -\frac{a_0}{9 \times 6 \times 3}$$

$$\Rightarrow a_{3n+1} = a_{3n+2} = 0 \forall n \geq 0$$

$$a_{3n} = \frac{(-1)^n a_0}{3^n n!} = \frac{(-1)^n}{3^n n!}$$

$$y = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n n!} t^{3n} = \sum_{n=0}^{\infty} \frac{(-\frac{t^3}{3})^n}{n!} = e^{-\frac{t^3}{3}}$$

#### **Example**

Solve

$$y'' + (t^2 + 2t + 1)y' - (4t + 4)y = 0$$
$$y(-1) = 0, y'(-1) = 1$$

#### Solution

Note that both  $t^2+2t+1$  and -(4t+4) are analytic at  $t_0=-1$  with a radius of convergence of  $\infty$ .

$$\begin{aligned} \text{Set } s &= t+1, z(s) = y(t+1) \\ \begin{cases} z'' + s^2 z' - 4sz &= 0 \\ z(0) &= 0 \\ z'(0) &= 1 \\ \end{aligned} \\ z &= \sum_{n=0}^{\infty} a_n s^n \Rightarrow -4sz = \sum_{n=0}^{\infty} -4a_n s^{n+1} = \sum_{n=1}^{\infty} -4a_{n-1} s^n \\ z' &= \sum_{n=1} n a_n s^{n-1} \Rightarrow s^2 z' = \sum_{n=1}^{\infty} n a_n z^{n+1} = \sum_{n=2}^{\infty} (n-1) a_{n-1} s^n \\ z'' &= \sum_{n=1} n(n-1) a_n s^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} s^n \\ z'' + s^2 z' - 4sz &= \\ 2a_2 + 6a_3 s - 4a_0 s + \sum_{n=2}^{\infty} (-4a_{n-1} + (n-1)a_{n-1} + (n+2)(n+1)a_{n+2}) s^n &= 0 \\ \Rightarrow \begin{cases} a_2 &= 0 \\ a_3 &= 2\frac{a_0}{3} \\ a_{n+2} &= -\frac{(n-5)a_{n-1}}{(n+2)(n+1)} \end{cases} \\ z(0) &= 0 \Rightarrow a_0 &= 0 \Rightarrow a_3 &= 0 \\ z'(0) &= 1 \Rightarrow a_1 &= 1 \\ a_4 &= -\frac{(-3)a_1}{4 \times 3} &= \frac{1}{4} \\ a_5 &= -\frac{(-2)(a_2)}{5 \times 4} &= 0 \\ a_6 &= -\frac{(-1)(a_3)}{6 \times 5} &= 0 \\ a_7 &= 0, a_8 &= 0, a_9 &= 0 \end{aligned}$$
 By induction  $a_n = 0, n \geq 5, z = s + \frac{s^4}{4}$   $\therefore$  the solution to the IVP is  $y = t + 1 + \frac{(t+1)^4}{4}$ 

## **Singular Point**

p(t) is unbounded near to  $t_0$  or q(t) is unbounded near  $t_0$ 

$$\forall t \in (t_0 - \varepsilon, t_0 + \varepsilon) - \{t_0\}, \neg \exists M, |p(t)| \leq M \land |q(t)| \leq M$$

and p,q are continuous on  $(t_0-\varepsilon,t_0+\varepsilon)-\{t_0\}$ .

#### **Example**

$$\begin{cases} p(t) = \frac{\sin(t)}{t}q(t) = \cos(t) \Rightarrow \frac{\sin(t)}{t} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n+1)!} \text{ is analytic, 0 is not a singular point} \\ \begin{cases} p(t) = \frac{\cos(t)}{t} \\ q(t) = \sin(t) \end{cases} \Rightarrow t = 0 \text{ is a singular point} \end{cases}$$

# Series solutions near regular singular points

## **Euler's Equation**

 $t^2y'' + \alpha ty' + \beta y = 0, \alpha, \beta \in \mathbb{R}$  is called an Euler's equation.

 $r(r-1)+\alpha r+\beta=0$  is called the indicial equation.

#### Solution

$$y=t^r\Rightarrow y'=rt^{r-1}, y''=r(r-1)t^{r-2}$$
 
$$t^2y''+\alpha ty'+\beta y=(r(r-1)+\alpha r+\beta)t^r=0$$
 
$$r(r-1)+\alpha r+\beta=0 \text{ : solve for } r\to 2 \text{ solutions, probably}$$

Find the two roots of the equation. If the two roots are distinct and real, then you have two <u>linearly independent</u> solutions. If they are not distinct, you multiply an answer by  $\log(t)$ . If you have nonreal roots, you get stuff with  $\cos$  and  $\sin$ 

#### **Example**

Solve for t > 0:

1. 
$$t^2y'' + 6ty' + 4y = 0$$

2. 
$$t^2y'' + 3ty' + y = 0$$

3. 
$$4t^2y'' + 20ty' + 25y = 0$$

#### Solution

1.

Set 
$$y = t^r$$
  
 $y' = rt^{r-1}, y'' = r(r-1)t^{r-2}$   
 $t^2y'' + 6ty' + 4y = (r(r-1) + 6r + 4)t^r = 0$   
 $\Rightarrow r(r-1) + 6r + 4 = 0$   
 $\Rightarrow r = \{-1, -4\}$ 

 $\Rightarrow t^{-1} \wedge t^{-4}$  are two linearly independent functions by the fact they are not scalar multiples of each other

$$\therefore y = \frac{\mathbb{c}_1}{t} + \frac{\mathbb{c}_2}{t^4}$$

2.

$$r^2+2r+1=0 \Rightarrow r=\{-1,-1\} \Rightarrow y=t^{-1}$$
 is a solution

We will find another solution via reduction of order.

$$y = t^{-1}v \Rightarrow y' = -t^{-2}v + t^{-1}v', y'' = 2t^{-3}v - 2t^{-2}v' + t^{-1}v''$$
$$t^{2}v'' + 3tv' + v = tv'' + (-2+3)v' + (0)v = 0$$

$$\overset{w=v'}{\Rightarrow}tw'+w=0\Rightarrow (tw)'=0\Rightarrow (tw)=1\Rightarrow w=\frac{1}{t}\Rightarrow v=\log(t) \text{ is a solution}$$

$$\Rightarrow y = \frac{\log(t)}{t}$$
 is a solution

$$\Rightarrow y = \frac{\mathbb{C}_1}{t} + \frac{\mathbb{C}_2 \log(t)}{t}$$
 is the general solution

3.

$$\begin{split} 4t^2y'' + 20ty' + 25y &= 0 \\ \Rightarrow 4r^2 + 16r + 25 &= 0 \Rightarrow (2r+4)^2 + 9 = 0 \Rightarrow r = -2 \pm \frac{3}{2}i \\ t^r &= t^{-2}t^{\frac{3}{2}i} = t^{-2}e^{\frac{3}{2}i\log(t)} \\ &= t^{-2}\left(\cos\left(\frac{3}{2}\log(t)\right) + i\sin\left(\frac{3}{2}\log(t)\right)\right) \end{split}$$

real and imaginary parts are both solutions

$$\Rightarrow \left\{ t^{-2} \cos\left(\frac{3}{2}\log(t)\right), t^{-2} \sin\left(\frac{3}{2}\log(t)\right) \right\} \subset y$$
$$\Rightarrow y = \frac{\mathbb{c}_1 \cos\left(\frac{3}{2}\log(t)\right) + \mathbb{c}_2 \sin\left(\frac{3}{2}\log(t)\right)}{t^2}$$

# **Regular Singularity**

We say  $t_0$  is a <u>regular singularity</u> for y''+p(t)y'+q(t)y=0 if  $t_0$  is a <u>singularity</u> and  $(t-t_0)p(t)$  is <u>analytic</u> and  $(t-t_0)^2q(t)$  is <u>analytic</u> around  $t_0$  but not necessarily on it.

#### **Motivation**

$$\begin{split} \left(t-t_0\right)^2 y'' + \alpha(t-t_0)y' + \beta y &= 0 \\ p(t) &= \frac{\alpha}{t-t_0}, q(t) = \frac{\beta}{\left(t-t_0\right)^2} \end{split}$$

But this has a solution, so we should see why this happens.

#### **Example**

$$(t^4-2t^2+1)y''+(t-1)y'+3y=0$$

#### **Solution**

$$p(t)=\frac{t-1}{\left(t^2-1\right)^2}=\frac{1}{\left(t-1\right)\left(t+1\right)^2} \text{ is unbounded near } t=\pm 1$$
 
$$q(t)=\frac{3}{\left(t-1\right)^2\left(t+1\right)^2} \text{ is unbounded near } t=\pm 1$$

Singular points are  $\pm 1$ 

For 
$$t_0 = 1$$
:

$$(t-1)p(t) = \frac{1}{(t+1)^2}, (t-1)^2q(t) = \frac{3}{(t+1)^2},$$
 both are analytic near 1.

: 1 is a regular singular point

For 
$$t_0 = -1$$
:

$$(t+1)p(t) = \frac{1}{(t-1)(t+1)}$$
 is unbounded near 1

 $\therefore$  -1 is an irregular singular point.

#### **Example**

Find a Fundamental Set of Solutions for

$$t^2y'' + ty' + \left(t^2 - \frac{1}{4}\right)y = 0, t > 0$$

## Solution

$$\begin{split} p(t) &= \frac{1}{t}, q(t) = \frac{t^2 - \frac{1}{4}}{t^2} \Rightarrow \text{regular singularity at } t_0 \\ y &= t^r \sum_{n=0}^{\infty} a_n t^n, a_0 \neq 0 \\ y &= \sum_{n=0}^{\infty} (r+n) t^{r+n-1} \Rightarrow ty' = \sum_{n=0}^{\infty} (r+n) a_n t^{r+n} \\ y'' &= \sum_{n=0}^{\infty} (r+n) (r+n-1) t^{r+n-2} \Rightarrow t^2 y'' = \sum_{n=0}^{\infty} (r+n) (r+n-1) t^{r+n} \\ t^2 y &= \sum_{n=0}^{\infty} a_n t^{r+n+2} = \sum_{n=2}^{\infty} a_{n-2} t^{r+n} \\ &= \frac{1}{4} y = \sum_{n=0}^{\infty} -\frac{1}{4} a_n t^{r+n} \\ \Rightarrow t^2 + ty' + t^2 y - \frac{1}{4} y \\ &= \underbrace{\left(\underbrace{r(r-1) a_0}_{\text{from } ty'} + \underbrace{ra_0}_{\text{from } ty'} - \underbrace{\frac{1}{4} a_0}_{\text{from } -\frac{1}{4} y}\right)}_{\text{from } -\frac{1}{4} y} t^r \\ &+ \left((r+1) ra_1 + (r+1) a_1 - \frac{1}{4} a_1\right) t^{r+1} \\ &+ \sum_{n=2}^{\infty} \left((r+n) (r+n-1) a_n + (r+n) a_n - \frac{1}{4} a_n + a_{n-2}\right) t^{r+n} \\ &= 0 \end{split}$$

Then we can make equations from that:

$$\begin{split} \left(r(r-1)+r-\frac{1}{4}\right)a_0 &= 0 \Rightarrow \left(r^2-\frac{1}{4}\right)a_0 = 0 \Rightarrow r = \pm\frac{1}{2} \text{ since } a_0 \neq 0 \\ \left((r+1)r+(r+1)-\frac{1}{4}\right)a_0 &= 0 \Rightarrow \left((r+1)^2-\frac{1}{4}\right)a_1 = 0 \\ \left((r+n)^2-\frac{1}{4}\right)a_n+a_{n-2} &= 0 \forall n \geq 2 \end{split}$$

Now we can solve this recurrence:

$$\begin{aligned} \operatorname{take} r &= \frac{1}{2} \\ \left( \left( \frac{3}{2} \right)^2 - \frac{1}{4} \right) a_1 &= 0 \Rightarrow a_1 = 0 \\ \left( \left( \frac{1}{2} + n \right)^2 - \frac{1}{4} \right) a_n + a_{n-2} &= (n+n^2) a_n = -a_{n-2} \Rightarrow a_n = -\frac{a_{n-2}}{n(n+1)} \\ a_1 &= 0 \Rightarrow a_3 = a_5 = \dots = 0 \\ a_2 &= -\frac{a_0}{3 \times 2}, a_4 = \frac{a_0}{5 \times 4 \times 3 \times 2} \Rightarrow a_{2n} = \frac{(-1)^n a_0}{(2n+1)!} \\ \Rightarrow y &= t^{\frac{1}{2}} \sum_{n=0}^{\infty} \frac{(-1)^n a_0}{(2n+1)!} t^{2n} = \frac{a_0 \sin(t)}{\sqrt{t}} \Rightarrow \frac{\sin(t)}{\sqrt{t}} \text{ is a solution} \\ \operatorname{Take} r &= -\frac{1}{2} \\ \left( \left( -\frac{1}{2} + 1 \right)^2 - \frac{1}{4} \right) a_1 &= 0 \Rightarrow 0 = 0 \\ \operatorname{how unhelpful} \\ \operatorname{Assume} a_0 &= 0 \\ \left( \left( -\frac{1}{2} + n \right)^2 - \frac{1}{4} \right) a_n &= -a_{n-2} \Rightarrow a_n = \frac{-a_{n-2}}{n(n-1)} \\ a_2 &= -\frac{a_0}{1 \times 2}, a_4 &= \frac{a_1}{1 \times 2 \times 3 \times 4} \Rightarrow a_{2n} &= \frac{(-1)^n a_0}{(2n)!} \\ a_3 &= -\frac{a_1}{3 \times 2} \Rightarrow a_{2n+1} &= \frac{(-1)^n a_1}{(2n+1)!} \\ y &= t^{-\frac{1}{2}} \left( \sum_{n=0}^{\infty} \frac{(-1)^n a_0}{(2n)!} t^{2n} + \sum_{n=0}^{\infty} \frac{(-1)^n a_1}{(2n+1)!} t^{2n+1} \right) \\ &= a_0 \frac{\cos(t)}{\sqrt{t}} + a_1 \frac{\sin(t)}{\sqrt{t}} \\ &\therefore \frac{\cos(t)}{\sqrt{t}} \text{ is a solution} \end{aligned}$$

#### **Theorem**

Let  $tp(t)=p_0+p_1t+\cdots$  and  $t^2q(t)=q_0+q_1t+\cdots$ 

Then, the indicial equation is  $r(r-1)+p_0r+q_0=0$ . Let  $r_1,r_2$  be roots with  $r_1\geq r_2$  if  $r_1,r_2\in\mathbb{R}$ . 1. If  $r_1,r_2\in\mathbb{R}$ :

$$y_1 = t^{r_1} \sum_{n=0}^{\infty} a_n t^n \qquad a_0 \neq 0$$

$$y_2 = cy_1(t)\ln(t) + t^{r_2} \sum_{n=0}^{\infty} b_n t^n \qquad b_0 \neq 0$$

If  $r_1 - r_2 \notin \mathbb{Z}$ , then c = 0

If  $r_1 = r_2$ , then c = 1.

If  $r_1 - r_2 \in \mathbb{Z}$ , then  $c \in \mathbb{R}$ 

2. If  $r_1 = \overline{r_2} = a \pm bi, b \neq 0$ :

$$y_1(t) = t^a \cos(b \ln(t)) \sum_{n=0}^{\infty} a_n t^n \qquad a_0 \neq 0$$

$$y_2(t) = t^a \sin(b \ln(t)) \sum_{n=0}^{\infty} b_n t^n \qquad b_0 \neq 0$$

#### **Proofish**

$$y'' + p(t)y' + q(t)y = 0$$

$$tp(t) = p_0 + p_1 t + \dots, t^2 q(t) = q_0 + q_0 t + \dots$$

$$y = \sum_{n=0}^{\infty} a_n t^{r+n}, y' = \sum_{n=0}^{\infty} (r+n) a_n t^{r+n-1}, y'' = \sum_{n=0}^{\infty} (r+n) (r+n-1) a_n t^{r+n-2}$$

$$\Rightarrow t^2y'' + t(tp(t))y' + t^2q(t)y = \sum_{n=0}^{\infty} (r+n)(r+n-1)a_nt^{r+n} + (p_0+p_1t+\ldots)\sum_{n=0}^{\infty} (r+n)a_nt^{r+n}$$

$$+(q_0+q_1t+\cdots)\sum_{n=0}^{\infty}a_nt^{r+n}=0$$

Form equations:

$$(r(r-1)+p_0r+q_0)a_0=0 \Rightarrow r(r-1)+p_0r+q_0=0$$

Coefficent of  $t^{r+n}$ :

$$\begin{split} &(r+n)(r+n-1)a_n + \sum_{k=0}^n p_k(r+n-k)a_{n-k} \sum_{k=0}^n q_k a_{n-k} \\ &= ((r+n)(r+n-1) + p_0(r+n) + q_0)a_n + \dots = 0 \end{split}$$

#### Example

Write down the form of a FSOS at  $t_0 = 0$ 

1. 
$$t^2y'' + (\sin t + t)y' + y = 0, t > 0$$

2. 
$$t^2y''(e^t-1)y'-(t+1)y=0, t>0$$

3. 
$$t^2y'' + (3t + t^4)y' + y = 0$$

#### Solution

1.

$$p(t) = \frac{\sin(t) + t}{t^2} \Rightarrow tp(t) = \frac{\sin(t)}{t} + 1 = 2 - \frac{t^2}{3!} + \frac{t^4}{5!} - \cdots$$
$$q(t) = \frac{1}{t^2} \Rightarrow t^2 q(t) = 1$$

The indicial equation:

$$r(r-1)+2r+1=0 \Rightarrow r=-\frac{1}{2}\pm\frac{\sqrt{3}}{2}i$$

Form of the solutions:

$$\begin{split} y_1 &= t^{-\frac{1}{2}} \cos \left(\frac{\sqrt{3}}{2} \ln(t)\right) \sum_{n=0}^{\infty} a_n t^n \qquad a_0 \neq 0 \\ y_2 &= t^{-\frac{1}{2}} \cos \left(\frac{\sqrt{3}}{2} \ln(t)\right) \sum_{n=0}^{\infty} b_n t^n \qquad b_0 \neq 0 \end{split}$$

2.

$$\begin{split} p(t) &= \frac{e^t-1}{t^2} \Rightarrow t p(t) = \frac{e^t-1}{t} = 1 + \frac{t}{2!} + \frac{t^2}{3!} + \cdots \\ q(t) &= -\frac{t+1}{t^2} \Rightarrow t^2 q(t) = -1 - t \end{split}$$

Indicial equation:

$$r(r-1)+r-1=0 \Rightarrow r^2-1=0 \Rightarrow r=\pm 1$$

Form of the equation:

$$\begin{aligned} y_1 &= t \sum_{n=0}^\infty a_n t^n \qquad a_0 \neq 0 \\ y_2 &= c y_1 \ln(t) + \frac{1}{t} \sum_{n=0}^\infty b_n t^n \qquad b_0 \neq 0 \end{aligned}$$

Since 1-(-1)=2 is a positive integer, c may be any real value.

3.

$$p(t) = \frac{3t + t^4}{t^2} \Rightarrow tp(t) = 3 + t^3$$
 
$$q(t) = \frac{1}{t^2} \Rightarrow t^2 q(t) = 1$$

Indicial equation:

$$r(r-1) + 3r + 1 = 0 \Rightarrow (r+1)^2 = 0 \to r = -1, -1$$

Form of the equation

$$\begin{aligned} y_1 &= \frac{1}{t} \sum_{n=0}^{\infty} a_n t^n \qquad a_0 \neq 0 \\ y_2 &= y_1 \ln(t) + \frac{1}{t} \sum_{n=0}^{\infty} b_n t^n \qquad b_0 \neq 0 \end{aligned}$$

# **Chapter 10: Laplace Transform**

We can turn multiplication into addition:

$$ab \stackrel{\ln}{\longrightarrow} \ln(a) + \ln(b)$$

This can be useful in calculus for differentiation:

$$\ln((x-1)^3(x+1)^4(x-2)^7) = 3\ln(x-1) + 4\ln(x+1) + 7\ln(x-1)$$

If we could turn differentiation into multiplication, that would be useful:

$$y'' + 3y' + 7y = 0 \xrightarrow{\text{Laplace Transform}} t^2y + 3ty + 7y = 1$$

## **Laplace Transform**

The Laplace Tranform,  $\mathcal{L}$ , assigns to any function f(t) defined for all  $t \geq 0$  a new function F(s)

$$F(s) = \mathcal{L}\{f(t)\}(s) = \int_0^\infty e^{-st} f(t) dt$$

as long as the integral converges.  $\mathcal{L}$  is linear by properties of integrals.

## **Example**

Find the Laplace of the following:

- 1.  $e^{at}$
- 2.  $e^{at}\cos(bt)$
- 3.  $e^{at}\sin(bt)$

#### Solution

1.

$$\begin{split} \mathcal{L}\{e^{at}\}(s) &= \int_0^\infty e^{-st} e^{at} \mathrm{d}t = \int_0^\infty e^{(a-s)t} \mathrm{d}t \\ &= \begin{cases} \lim_{T \to \infty} \int_0^\infty \mathrm{d}t = \infty & \text{if } a = s \\ \lim_{T \to \infty} \frac{e^{a-s}-1}{a-s} = \infty & \text{if } a \neq s \end{cases} \\ &= \begin{cases} \infty & \text{if } a \geq s \\ \frac{1}{s-a} & \text{if } s > a \end{cases} \end{split}$$

- 2.
- 3.

Assume  $b \neq 0$ 

$$\begin{split} e^{at}\cos(bt) + ie^{at}\sin(bt) &= e^{(a+bi)t} \\ \mathcal{L}\left\{e^{(a+bi)t}\right\}(s) &= \int_0^\infty e^{(a+bi-s)t} \mathrm{d}t = \begin{cases} \mathrm{Diverges} & \text{if } a \geq s \\ \frac{1}{s-a-bi} & \text{if } s > a \end{cases} \\ &\Rightarrow \mathcal{L}\left\{e^{(a+bi)t}\right\}(s) = \frac{s-a+bi}{(s-a)^2+b^2} \\ &\stackrel{\mathrm{Re}}{\Rightarrow} \mathcal{L}\left\{e^{at}\cos(bt)\right\}(s) = \frac{s-a}{(s-a)^2+b^2} \\ &\stackrel{\mathrm{Im}}{\Rightarrow} \mathcal{L}\left\{e^{at}\sin(bt)\right\}(s) = \frac{b}{(s-a)^2+b^2} \end{split}$$

## **Table of Laplaces**

| $j(t) = \mathcal{L}^{-1}[J(s)]$ | $J(s) = \mathcal{L}[j(t)]$ |
|---------------------------------|----------------------------|
| $e^{at}$ , $a\in\mathbb{R}$     | $\frac{1}{s-a}$            |

## What can go wrong with the Laplace

- 1. f could have too many points of discontinuity
- 2. f is too large compared to  $e^{st}$  For example,  $f(t)=e^{t^2}\gg e^{st} \forall s\Rightarrow \int_0^\infty e^{t^2-st}\mathrm{d}t=\infty$

## **Piecewise continuous**

We say  $f:[0,\infty)\to\mathbb{R}$  is piecewise continuous if for every r>0 there are only finitely many points of discontinuity for  $f(t)\in[0,r]$ 

# **Exponential Order**

We say  $f:[0,\infty)\to\mathbb{R}$  is of exponential order if  $\forall t\geq 0, \exists c,M\in\mathbb{R} \text{ s.t. } |f(t)|\leq Me^{ct}$ . We say f is of exponential order not exceeding c.

#### **Examples**

- 1.  $|\sin(t)| < 1 : \sin(t)$  is of exponential runtime not exceeding 0.
- 2. t is not of exponential runtime not exceeding 0 because  $|t| \leq Me^{0t}$  does not hold for any M. However,  $|t| \leq Me^{ct}$  holds for every c > 0. M will depend on c.

For 
$$\varepsilon=1$$
 there is some  $s>0$  such that if  $t>s$  then  $\left|\frac{t}{e^{ct}}-0\right|<1$  
$$\Rightarrow \frac{t}{e^{ct}}<1 \text{ for all } t>s$$

By the EVT,  $\frac{t}{e^{ct}}$  attains a max m over  $[0,\delta]$ . Thus,  $\left|\frac{t}{e^t}\right| \leq m$  for all  $t \in [0,\delta]$ .

$$\left| \frac{t}{e^{ct}} \right| \le \max(1, m) \text{ for all } t \ge 0$$
$$|t| \le \underbrace{\max(1, m)e^{ct}}_{m}$$

## Theorem on the existence of the Laplace

Suppose  $f:[0,\infty]\to\mathbb{R}$  is piecewise continuous and of exponential order. Then its Laplace transformation  $\mathcal{L}\{f(t)\}(s)$  exists for sufficiently large s. Specifically, if f is piecewise continuous, and  $|f(t)|\leq Me^{ct}$  for constants c,M, and for all  $t\geq 0$ , then  $\mathcal{L}\{f(t)\}(s)$  exists for all s>c.

## **Equality of Laplaces**

Suppose f(t) and g(t) are two functions continuous over  $[0,\infty)$ , both of which are of exponential order. Assume there is a real number A for which  $\mathcal{L}\{f(t)\}(s)=\mathcal{L}\{g(t)\}(s)$  for all s>A. Then f(t)=g(t) for all  $t\in[0,\infty)$ .

Essentially, 
$$\mathcal{L}\{f(t)\}(s) = \mathcal{L}\{g(t)\}(s) \iff f(t) = g(t) \text{ for } s > A, t \geq 0$$

## **Examples**

#### **Example**

Solve 
$$y' - 2y = e^{5t}, y(0) = 3$$
:

#### **Solution**

We will evaluate the Laplace of y and then take the inverse Laplace.

Suppose  $\mathcal{L}\{y(t)\}(s) = Y(s)$ .

$$\begin{split} \mathcal{L}\{y'(t)\}(s) - 2Y(s) &= \mathcal{L}\{e^{5t}\} \\ \mathcal{L}\{y'(t)\}(s) - 2Y(s) &= \frac{1}{s-5} \\ \\ \mathcal{L}\{y'(t)\}(s) &= \int_0^\infty e^{-st}y'(t)\mathrm{d}t = e^{-st}y(t)\big|_{t=0}^{t=\infty} - \int_0^\infty y(t)\big(-se^{-st}\big)\mathrm{d}t \\ &= 0 - \underbrace{y(0)}_{y(0)=3} + sY(s) = sY(s) - 3 \\ \\ sY(s) - 3 - 2Y(s) &= \frac{1}{s-5} \\ \Rightarrow Y(s) &= \frac{3}{s-2} + \frac{1}{(s-2)(s-5)} \\ &= \frac{3}{s-2} + \frac{-\frac{1}{3}}{s-2} + \frac{\frac{1}{3}}{s-5} \\ &= y(t) = \mathcal{L}^{-1}\Big\{\frac{8}{3(s-2)} + \frac{1}{3(s-5)}\Big\}(t) = \frac{8}{3}e^{2t} + \frac{1}{3}e^{5t} \end{split}$$

#### Theorem on the order of a solution

Suppose  $f:[0,\infty)\to\mathbb{R}$  is of exponential order. Let L[y]=f(t) be a linear equation with constant coefficients. Then, every solution to this equation is of exponential order.

## Theorem on the Laplace of a derived function

Suppose  $f:[0,\infty)\to\mathbb{R}$  is n times differentiable,  $f^{(n)}(t)$  is piecewise continuous, and of exponential order not exceeding c. Let  $F(s)=\mathcal{L}\{f(t)(s)\}$ . Then,

$$\mathcal{L}\{f^{(n)}(t)\}(s) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$$

#### **Proof**

We know

$$\begin{split} \left|f^{(n)}(t)\right| &\leq Me^{ct} \Rightarrow -Me^{ct} \leq f^{(n)} \leq Me^{ct} \\ &\stackrel{\text{integration}}{\Rightarrow} -\frac{Me^{ct}}{c} + \frac{Me^0}{c} \leq f^{(n-1)}(t) - f^{(n-1)}(0) \leq \frac{Me^{ct}}{c} - \frac{Me^0}{c} \end{split}$$

Therefore,  $f^{(n-1)}$  is of exponential order.

$$\begin{split} \mathcal{L}\big\{f^{(n)}(t)\big\}(s) &= \int_0^\infty e^{-st} f^{(n)}(t) \mathrm{d}t = e^{-st} f^{(n-1)} - \int_0^\infty f^{(n-1)}(t) \big(-se^{-st}\big) \mathrm{d}t \\ &= 0 - e^0 f^{(n-1)}(0) + s \mathcal{L}\big\{f^{(n-1)}(t)\big\}(s) \end{split}$$

Finish off the proof by applying the inductive hypothesis.

## How to find a particular solution

Suppose we want to find a particular solution for  $y^{(n)}+a_ny^{(n-1)}+\cdots+a_1y=f(t)$ , where  $a_1,...,a_n$  are constants.

$$\begin{split} \text{Let } \mathcal{L}\{f(t)\}(s) &= F(s) \text{ and } \mathcal{L}\{y(t)\} = Y(s) \\ y^{(n)} + a_n y^{(n-1)} + \dots + a_1 y &= f(t) \\ \Rightarrow s^n Y(s) &= s^n Y(s) - s^{n-1} y(0) - s^{n-2} y'(0) - \dots - y^{(n-1)}(0) \\ &+ a_n \big( s^{n-1} Y(s) - s^{n-2} y(0) - \dots - y^{(n-2)}(0) \big) \\ &+ \dots + a_1 Y(s) &= F(s) \end{split}$$

Set 
$$y(0) = \dots = y^{(n-1)}(0) = 0$$

$$s^nY(s)+a_ns^{n-1}Y(s)+\cdots+a_1Y(s)=F(s)$$
 
$$Y(s)=\frac{F(s)}{s^n+a_ns^{n-1}+\cdots+a_1}=\frac{F(s)}{\underbrace{p(s)}}$$

characteristic polynomial

$$Y_p = \mathcal{L}^{-1}\bigg\{\frac{F(s)}{p(s)}\bigg\}(t)$$

#### Theorem on derivatives

Suppose  $f:[0,\infty)\to\mathbb{R}$  is piecewise continuous and of exponential order not exceeding c. Then its Laplace transform F(s) is infinitely differentiable and for every positive integer n and every real number a, we have

1. 
$$\mathcal{L}\{t^nf(t)\}=(-1)^nF^{(n)}(s)$$
, for all  $s>c$ 

2. 
$$\mathcal{L}\{e^{at}f(t)\} = F(s-a)$$
, for all  $s > a+c$ 

#### **Proof**

1.

$$\begin{split} F(s) &= \mathcal{L}\{f(t)\}(s) = \int_0^\infty e^{-st} f(t) \mathrm{d}t \\ F'(s) &= \int_0^\infty -t e^{-st} f(t) \mathrm{d}t = -\int_0^\infty e^{-st} t f(t) \mathrm{d}t = -\mathcal{L}\{t f(t)\}(s) \\ &\Rightarrow \mathcal{L}\{t^n f(t)\}(s) = (-1)F^{(n)}(s) \end{split}$$

2.

$$\mathcal{L}\big\{e^{at}f(t)\big\}(s) = \int_0^\infty e^{-st}e^{at}f(t)\mathrm{d}t = \int_0^\infty e^{-(s-a)t}f(t)\mathrm{d}t = \mathcal{L}\{f(t)\}(s-a) = F(s-a)$$

## **Examples**

## **Example**

Find the inverse Laplace of  $\frac{1}{(s+1)^2}$ 

#### Solution

$$\mathcal{L}^{-1}\bigg\{\frac{1}{s+1}\bigg\}(t) = e^{-t}$$
 
$$\mathcal{L}\big\{te^{-t}\big\}(s) = -\frac{\mathrm{d}}{\mathrm{d}s}\Big(\mathcal{L}\big\{e^{-t}\big\}(s)\Big) = -\frac{\mathrm{d}}{\mathrm{d}s}\bigg(\frac{1}{s+1}\bigg) = \frac{1}{\left(s+1\right)^2} \Rightarrow \mathcal{L}^{-1}\bigg\{\frac{1}{\left(s+1\right)^2}\bigg\}(t) = te^{-t}$$

#### **Example**

Using the Laplace transform, solve the IVP:

$$y''' + 2y'' + y' = 0, y(0) = 1, y'(0) = y''(0) = 0$$

#### Solution

Let 
$$Y(s) = \mathcal{L}(y(t))(s)$$
.

Take the Laplace transform of both sides

$$\underbrace{s^3Y(s) - s^2y(0) - sy'(0) - y''(0)}_{\mathcal{L}\{y'''\}} + \underbrace{2s^2Y(s) - 2sy(0) - 2y'(0)}_{2\mathcal{L}\{y''\}} + \underbrace{sY(s) - y(0)}_{\mathcal{L}\{y'\}} = \underbrace{0}_{\mathcal{L}\{0\}}$$
 
$$(s^3 + 2s^2 + s)Y(s) - s^2 - 2s - 1 = 0 \Rightarrow Y(s) = \frac{1}{s} \Rightarrow y(t) = \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}(t) = e^{0t} = 1$$
 
$$\boxed{y(t) = 1}$$

#### **Example**

$$\mathcal{L}^{-1} \left\{ \frac{5}{s^4 + 13s^2 + 36} \right\}$$

#### Solution

$$\frac{5}{s^4 + 13s^2 + 36} = \frac{1}{s^2 + 4} - \frac{1}{s^2 + 9}$$

$$\mathcal{L}^{-1} \left\{ \frac{5}{s^4 + 13s^2 + 36} \right\} = \mathcal{L}^{-1} \left\{ \frac{1}{s^2 + 4} \right\} + \mathcal{L}^{-1} \left\{ \frac{1}{s^2 + 9} \right\}$$

$$= \boxed{\frac{1}{2} \sin(2t) + \frac{1}{3} \sin(3t)}$$

# **Definition of Heaviside**

$$H(t) = \begin{cases} 1 & \text{if } t \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

And here is a plot of H(t):



#### **Example**

$$f(t) = \begin{cases} \sin(t) & t \ge 0 \\ 0 & t \le 0 \end{cases}$$

This can be written as:

$$f(t) = H(t)\sin(t)$$

You can write down ones that aren't at zeros by shifting the Heaviside function;

$$f(t) = \begin{cases} \sin(t) & t \ge 1 \\ 0 & t \le 1 \end{cases} = H(t-1)\sin(t)$$

If it only exists in a particular region, you can deal with that by subtracting them:

$$\begin{cases} 0 & \quad \text{if } t < 1 \\ 1 & \quad \text{if } 1 \leq t < 2 = H(t-1) - H(t-2) \\ 0 & \quad \text{if } 2 \leq t \end{cases}$$

#### **Example**

$$\mathcal{L}\{H(t-c)f(t-c)\}(s) \text{ for } c \geq 0$$

Solution

$$\begin{split} \int_0^\infty e^{-st} H(t-c) f(t-c) \mathrm{d}t &= \int_c^\infty e^{-st} H(t-c) f(t-c) \mathrm{d}t \\ \overset{u=t-c}{=} \int_0^\infty e^{-s(u+c)} f(u) \mathrm{d}u &= e^{-sc} \int_0^\infty e^{-su} f(u) \mathrm{d}u = e^{-sc} \mathcal{L}\{f(t)\}(s) \end{split}$$

#### **Example**

Find the Laplace of f(t)

$$f(t) = \begin{cases} t^2 & 0 \le t < 2\\ 1 - t & 2 \le t < 3\\ 1 & 3 \le t \end{cases}$$

#### Solution

Rewrite with Heaviside functions:

$$f(t) = t^2(H(t) - H(t-2)) + (1-t)(H(t-2) - H(t-3)) + 1(H(t-3))$$

Recall:

$$\mathcal{L}\{H(t-c)j(t-c)\}(s) = e^{-cs}\mathcal{L}\{j(t)\}(s)$$

Rewrite:

$$\begin{split} f(t) &= H(t)\underbrace{t^2}_{j_1} + H(t-2)\underbrace{\left(-t^2+1-t\right)}_{j_2} + H(t-3)\underbrace{\left(-1+t+1\right)}_{j_3} \\ j_1(t) &= t^2 \\ j_2(t-2) &= -t^2+1-t \Rightarrow j_2(t) = -t^2-5t-5 \\ j_3(t-3) &= t \Rightarrow j_3(t) = t+3 \\ \mathcal{L}\{H(t)t^2\}(s) &= e^{-0s}\mathcal{L}\{t^2\}(s) = \frac{2!}{s^3} = \frac{2}{s^3} \\ \mathcal{L}\{H(t-2)j_2(t-2)\}(s) &= e^{-2s}\mathcal{L}\{-t^2-5t-5\}(s) = e^{-2s}\left(-\frac{2}{s^3}-\frac{5}{s^2}-\frac{5}{s}\right) \\ \mathcal{L}\{H(t-3)j_3(t-3)\}(s) &= e^{-3s}\mathcal{L}\{t+3\}(s) = e^{-3s}\left(\frac{1}{s^2}+\frac{3}{s}\right) \end{split}$$

Therefore, after summing up:

$$\mathcal{L}\{f(t)\}(s) = \frac{2}{s^3} - e^{-2s} \left(\frac{2}{s^3} + \frac{5}{s^2} + \frac{5}{s}\right) + e^{-3s} \left(\frac{1}{s^2} + \frac{3}{s}\right)$$

#### Convolution

$$(f \star g)(t) = \int_0^t f(x)g(t-x)\mathrm{d}x$$
 
$$f \star g = g \star f$$

## **Product of Laplaces**

$$\mathcal{L}\{f\}\mathcal{L}\{g\} = \mathcal{L}\{f\star g\}$$

#### **Proofish**

$$\mathcal{L}\{f\star g\} = \int_0^\infty e^{-st}(f\star g)(t)\mathrm{d}t$$

$$= \int_0^\infty e^{-st} \int_0^t f(x)g(t-x)\mathrm{d}x\mathrm{d}t$$

$$= \int_0^\infty \int_0^t e^{-st}f(x)g(t-x)\mathrm{d}x\mathrm{d}t$$

$$= \int_0^\infty \int_0^\infty e^{-st}f(x)g(t-x)\mathrm{d}t\mathrm{d}x$$

$$= \int_0^\infty f(x) \int_x^\infty e^{-st}g(t-x)\mathrm{d}t\mathrm{d}x$$

$$= \int_0^\infty f(x) \int_x^\infty e^{-st}g(t-x)\mathrm{d}t\mathrm{d}x$$

$$= \int_0^\infty f(x) \int_x^\infty e^{-s(u+x)}g(u)\mathrm{d}t\mathrm{d}x$$

$$= \int_0^\infty f(x)e^{-sx} \int_x^\infty e^{-su}g(u)\mathrm{d}t\mathrm{d}x$$

$$= \int_0^\infty f(x)e^{-sx}\mathcal{L}\{g\}(s)\mathrm{d}t\mathrm{d}x$$

$$= \mathcal{L}\{g\}(s) \int_0^\infty f(x)e^{-sx}\mathrm{d}t\mathrm{d}x$$

$$= \mathcal{L}\{g\}(s)\mathcal{L}\{f\}(s)$$

#### **Example**

$$\mathcal{L}^{-1}\bigg\{\frac{1}{s^4 + 2s^2 + 1}\bigg\}$$

#### Solution

$$\frac{1}{s^4 + 2s^2 + 1} = \frac{1}{(s^2 + 1)^2} = \frac{1}{s^2 + 1} \cdot \frac{1}{s^2 + 1}$$
$$\mathcal{L}^{-1} \left\{ \frac{1}{s^2 + 1} \right\} (s) = \sin(t)$$
$$(\sin \star \sin)(t) = \int_0^t \sin(x) \sin(t - x) dx$$

$$= \int_0^t \frac{1}{2} (\cos(t - 2x) - \cos(t)) \mathrm{d}x = \dots \square$$

#### **Another solution**

$$\mathcal{L}^{-1}\left\{\frac{1}{s^2+1}\right\} = \sin(t)$$
 
$$\mathcal{L}^{-1}\left\{\frac{s}{s^2+1}\right\} = \cos(t)$$
 
$$\therefore \mathcal{L}^{-1}\left\{\frac{\mathrm{d}}{\mathrm{d}s}\left(\frac{1}{s^2+1}\right)\right\} = -t\sin(t)$$
 
$$\mathcal{L}^{-1}\left\{\frac{-2s}{(s^2+1)^2}\right\} = -t\sin(t)$$
 similarly 
$$\mathcal{L}^{-1}\left\{\frac{\frac{s^2+1-2s^2}}{(s^2+1)^2}\right\} = -t\cos(t)$$
 
$$\mathcal{L}^{-1}\left\{\frac{2-s^2-1}{(s^2+1)^2}\right\} = -t\cos(t)$$
 
$$\mathcal{L}^{-1}\left\{\frac{2}{(s^2+1)^2}\right\} - \mathcal{L}^{-1}\left\{\frac{1}{s^2+1}\right\} = -t\cos(t)$$
 
$$\mathcal{L}^{-1}\left\{\frac{2}{(s^2+1)^2}\right\} - \sin(t) = -t\sin(t) \Rightarrow \mathcal{L}^{-1}\left\{\frac{1}{(s^2+1)^2}\right\} = \frac{1}{2}(\sin(t) - t\cos(t))$$

# **Chapter 11: Systems of Differential Equations**

## **First-Order System**

 $x_1(t),...,x_n(t)$  are unknown.

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = f_1(t, x_1, ..., x_n) \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = f_2(t, x_2, ..., x_n) \\ \vdots \\ \frac{\mathrm{d}x_n}{\mathrm{d}t} = f_n(t, x_2, ..., x_n) \end{cases}$$

We use  $\vec{x}=(x_1,...,x_n); \vec{f}=(f_1,...,f_n)$ , and write  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=\vec{f}(t,\vec{x})$  as the compact form.  $\vec{f}$  is called forcing.

We can write down any differential equation or system as a first-order system by using something like  $x_1=x, x_2=x^\prime$ , etc.

#### **Example**

Convert the system into a first-order system:

$$\begin{cases} x'' = x^2 + x' + txy' \\ y'' = y'y + yt^3 \end{cases}$$

Solution

$$\begin{split} x_1 &= x_1, x_2 = x', x_3 = y, x_4 = y' \\ \begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} &= x_2 \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} &= x_1^2 + x_2 + tx_1x_4 \\ \frac{\mathrm{d}x_3}{\mathrm{d}t} &= x_4 \\ \frac{\mathrm{d}x_4}{\mathrm{d}t} &= x_4x_3 + t^3x_3 \end{cases} \end{split}$$

## **Linear Systems**

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + f_1(t) \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + f_2(t) \\ \vdots \\ \frac{\mathrm{d}x_n}{\mathrm{d}t} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + f_n(t) \end{cases}$$

This can also be written in matrix form:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ & \vdots & & & \\ a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} f_1(t) \\ f_2(t) \\ \vdots \\ f_n(t) \end{pmatrix}$$

Every first-order linear system can be written as  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A(t)\vec{x} + \vec{f}(t)$ , where A(t) is an  $n \times n$  matrix with entries as functions of t,  $\vec{f}(t)$  is a  $n \times 1$  column whose entries are functions of t, and  $\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ 

#### **Example**

Find the forcing and coefficient matrix of:

$$\begin{cases} x_1' = 2x_1 - tx_2 + \sin(t) \\ x_2' = t^2x_1 + \cos(t)x_2 \end{cases}$$

#### **Solution**

$$A(t) = \begin{pmatrix} 2 & -t \\ t^2 & \cos(t) \end{pmatrix}$$
 
$$\vec{f}(t) = \begin{pmatrix} \sin(t) \\ 0 \end{pmatrix}$$

#### **Example**

Write as a first-order system and find the coefficient matrix and the forcing.

$$y''' - y'' + ty' + \tan(t)y = e^{t^2}$$

Solution

$$x_1 = y, x_2 = y', x_3 = y''$$

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = x_2 \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = x_3 \\ \frac{\mathrm{d}x_3}{\mathrm{d}t} = x_3 - tx_2 - \tan(t)x_1 + e^{t^2} \end{cases}$$

The coeffient matrix:

$$A(t) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\tan(t) & -t & 1 \end{pmatrix}$$

The forcing:

$$\vec{f}(t) = \begin{pmatrix} 0 \\ 0 \\ e^{t^2} \end{pmatrix}$$

#### **Example**

Convert the following nth order linear equation into a first-order linear system. Find its coefficient matrix and forcing.

$$y^{(n)} + a_n(t)y^{(n-1)} + \dots + a_1(t)y = f(t)$$

#### Solution

Set:

$$x_1 = y, x_2 = y^\prime, ..., x_n = y^{(n-1)}$$

Then:

$$\begin{cases} x_1' = x_2 \\ x_2' = x_3 \\ \vdots \\ x_{n-1}' = x_n \\ x_n' = -a_1(t)x_1 - a_2(t)x_2 - \dots - a_n(t)x_n + f(t) \end{cases}$$

The coefficient matrix is therefore:

$$A(t) = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \ddots & & \vdots \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & \cdots & & 0 & 1 \\ -a_1(t) & -a_2(t) & -a_3(t) & \cdots & -a_{n-1}(t) & -a_{n(t)} \end{pmatrix}$$

And the forcing is:

$$\vec{f}(t) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ f(t) \end{pmatrix}$$

# To solve a nth order linear differential equation

Similar to nth order linear differential equation, to solve  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A(t)\vec{x} + \vec{f}(t)$ 

- 1. Find the general solution  $\vec{x}_H$  to  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A(t)\vec{x}$ 2. Find a particular solution  $\vec{x}_p$  to  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A(t)\vec{x}+\vec{f}(t)$ 3. The general solution to  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A(t)\vec{x}+\vec{f}(t)$  is  $\vec{x}_H+\vec{x}_p$

We always assume this process is done over an interval unless specified otherwise.

## **Existence and Uniqueness theorem for First-Order Differential Equations**

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A(t)\vec{x} + \vec{f}(t); A(t) \text{ is } n \times n$$

All entries are continuous over (a, b) and  $t_0 \in (a, b)$ .

Then, this has a unique solution defined over (a, b):

$$\begin{cases} \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A(t)\vec{x} + \vec{f}(t) \\ \vec{x}(t_0) = \vec{x_0} \end{cases}$$

#### **Example**

Find the largest interval that the IVP has a unique solution over:

$$\begin{cases} t^2x'=2x-(\cos(t))y+\tan(t)\\ (\sin t)y'=tx+y+\cos(t)\\ x(1)=0\\ y(1)=0 \end{cases}$$

#### Solution

$$A(t) = \begin{pmatrix} \frac{2}{t^2} & -\frac{\cos(t)}{t^2} \\ \frac{t}{\sin(t)} & \frac{1}{\sin(t)} \end{pmatrix}$$
$$\vec{f}(t) = \begin{pmatrix} \frac{\tan(t)}{t^2} \\ \cot(t) \end{pmatrix}$$

We need all entries to be continuous, so

$$t \neq 0, t \neq k\pi, t \neq \frac{\pi}{2} + j\pi$$
  $(k, j \in \mathbb{Z})$ 

Because  $t_0=1$  is in the interval, and  $\frac{\pi}{2}>1$ , we are in the first range between 0 and  $\frac{\pi}{2}$ . Therefore,  $\left(0,\frac{\pi}{2}\right)$  is the largest interval.

## **Dimension of First-order Homogenous Linear System**

Consider the first-order n-dimensional system  $\frac{d\vec{x}}{dt} = A(t)\vec{x}$ . If all entries of A(t) are continuous over (a,b), then the solution set, defined over (a,b), is an n-dimensional vector space.

#### **Proof**

#### **Proof of subspace**

$$\vec{x} = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix} \subset C(a,b) \times \cdots \times C(a,b)$$

The solution set is a subset of  $(C(a,b))^n$ . Then apply the subspace criterion.

#### Proof of subspace, alternative

$$L(\vec{x}) = \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} - A(t)\vec{x}$$
 is linear

Thus, its kernel is a subspace.

#### **Proof of Basis**

Fix  $t_0 \in (a,b)$ 

$$\exists$$
 a solution  $\overrightarrow{N_j}$  to  $\begin{cases} \frac{\mathrm{d} \vec{x}}{\mathrm{d} t} = A(t) \vec{x} \\ \vec{x}(t_0) = \vec{e_j} \end{cases}$  for  $j=1,...,n$ 

We will show  $\overrightarrow{N_1},...,\overrightarrow{N_n}$  form a basis for the solution set.

#### **Linear Independence**

Suppose  $\mathbb{c}_1,...,\mathbb{c}_n\in\mathbb{R}$  satisfy  $\mathbb{c}_1\overrightarrow{N_1}(t)+\cdots+\mathbb{c}_n\overrightarrow{N_n}(t)=\vec{0}$  for all  $t\in(a,b)$ . Substitute  $t=t_0$  to obtain  $\mathbb{c}_1\vec{e_1}+\cdots+\mathbb{c}_n\vec{e_n}=\vec{0}$ . By linear independence,  $\mathbb{c}_1=\cdots=\mathbb{c}_n=0$ , which shows that  $\overrightarrow{N_1},...,\overrightarrow{N_n}$  is linear independent.

## **Spanning**

Suppose  $\vec{y}(t)$  is a solution defined over (a,b) to  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A(t)\vec{x}.$ 

 $\vec{y}(t)$  satisfies:

$$\begin{cases} \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A(t)\vec{x} \\ \vec{x}(t_0) = \vec{y}(t_0) \end{cases}$$

Assume  $\vec{y}(t_0)=(y_1,...,y_n)$ . Since the solution set is a vector space,  $y_1\overrightarrow{N_1}(t)+\cdots+y_n\overrightarrow{N_n}(t)$  is a solution to  $\frac{d\vec{x}}{dt}=A(t)\vec{x}$ .

$$y(t_0)=(y_1,...,y_n)=y_1\vec{e_1}+\cdots+y_n\vec{e_n}=y_1\overrightarrow{N_1}(t_0)+\cdots+y_n\overrightarrow{N_n}(t_0)$$

Therefore,  $y_1\overrightarrow{N_1}(t)+\cdots+y_n\overrightarrow{N_n}(t)$  satisifies  $\vec{x}(t_0)=\vec{y}(t_0)$ . Because  $\vec{y}(t)$  could be any solution, and this can represent any of those solutions, this set spans the solution set.

#### **Wronskian**

The Wronskian of n functions is defined and denoted by:

$$W \left[ \vec{\phi}_1(t), ..., \vec{\phi}_n(t) \right] = \det \Bigl( \vec{\phi}_1(t) \ \cdots \ \vec{\phi}_n(t) \Bigr)$$

## Wronskian shows when a solution works

If  $W\left[\vec{\phi}_1(t),...,\vec{\phi}_n(t)\right]\Big|_{t=t_0}=0$ , then  $\vec{\phi}_1(t),...,\vec{\phi}_n(t)$  form a basis for the solution set of  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A(t)\vec{x}$ .

#### **Proof**

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A(t)\vec{t} \quad \text{with } t \in (a, b), A \text{ is } n \times n$$

How do we know solutions  $\vec{\phi}_1(t),...,\vec{\phi}_n(t)$  form a basis for the solution set of  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A(t)\vec{x}$ ? Fix  $t_0\in(a,b)$ . We know every solution to  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A(t)\vec{x}$  is a solution to some IVP:

$$\begin{cases} \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A(t)\vec{x} \\ \vec{x}(t_0) = \vec{c_0} \end{cases}$$

In other words, we need to ensure that every solution to the IVP is a linear combination of  $\vec{\phi}_1(t),...,\vec{\phi}_n(t)$ .

By linearity  $\forall \mathbb{c}_1,...,\mathbb{c}_n \in \mathbb{R}, \mathbb{c}_1 \vec{\phi}_1(t) + \cdots + \mathbb{c}_n \vec{\phi}_n(t)$  satisfies  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A(t)\vec{x}$ .

We need to make sure for every  $\vec{c_0} \in \mathbb{R}^n, \exists \mathbb{c}_1, ..., \mathbb{c}_n \in \mathbb{R}$  such that  $\mathbb{c}_1 \vec{\phi}_1(t_0) + \cdots + \mathbb{c}_n \vec{\phi}_n(t_0) = \vec{c_0}$ .

This can also be written with matrices:

$$\underbrace{\left(\vec{\phi}_1(t_0) \ \cdots \ \vec{\phi}_n(t_0)\right)}_{n \times n} \begin{pmatrix} \mathbb{c}_1 \\ \mathbb{c}_2 \\ \vdots \\ \mathbb{c}_n \end{pmatrix} = \vec{c_0}$$

This matrix equation has a solution  $\mathbb{c}_1,...,\mathbb{c}_n$  for every  $\vec{c_0} \in \mathbb{R}^n$  iff

$$\det\left(\vec{\phi}_1(t_0) \ \cdots \ \vec{\phi}_n(t_0)\right) \neq 0$$

#### **Relation to other Wronskian**

$$\begin{split} y^{(n)} + a_n(t)y^{(n-1)} + \cdots + a_1(t)y &= 0 \\ Y_1, ..., Y_n \text{ are solutions} \Rightarrow W[Y_1, ..., Y_n](t) &= \det \begin{pmatrix} Y_1(t) & \cdots & Y_n(t) \\ Y_1'(t) & \cdots & Y_n'(t) \\ & \vdots \\ Y_1^{(n-1)}(t) & \cdots & Y_n^{(n-1)}(t) \end{pmatrix} \end{split}$$

But also, this equation becomes

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = x_2 \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = x_3 \\ \vdots \\ \frac{\mathrm{d}x_n}{\mathrm{d}t} = -a_n(t)x_{n-1} - \dots - a_1(t)x_1 \end{cases}$$

$$\overrightarrow{\phi_k}(t) = \begin{pmatrix} Y_k \\ Y_k' \\ \vdots \\ Y_{\cdot}^{(n-1)} \end{pmatrix}$$

Then:

$$W\left[\vec{\phi}_{1},...,\vec{\phi}_{n}\right] = \det \begin{pmatrix} Y_{1}(t) & \cdots & Y_{n}(t) \\ Y'_{1}(t) & \cdots & Y'_{n}(t) \\ & \vdots & \\ Y_{1}^{(n-1)}(t) & \cdots & Y_{n}^{(n-1)}(t) \end{pmatrix} = W[Y_{1},...,Y_{n}]$$

# Wronskian is never zero if it isn't zero at a point

Suppose all entries of the coefficient matrix of a first-order n-dimensional homogenous linear system are continuous over (a,b). Suppose the Wronskian of n solutions to this system is zero at one point  $t_0 \in (a,b)$ , then the Wronskian must be zero everywhere on (a,b)

$$W[...](t_0) \neq 0 \Rightarrow \forall t \in (a,b), W[...](t) \neq 0$$

#### Proof

Since  $\det\left(\vec{\phi}_1(t_0) \ \dots \ \vec{\phi}_n(t_0)\right) \neq 0$ , by the proof above,  $\vec{\phi}_1(t), \dots, \vec{\phi}_n(t)$  form a basis.

We will show  $\det \left( \vec{\phi}_1(t) \; \ldots \; \vec{\phi}_n(t) \right) \neq 0$  for all  $t \in (a,b)$ .

On the contrary, assume  $\det \left( \vec{\phi}_1(t_1) \; \ldots \; \vec{\phi}_n(t_1) \right) = 0$  for some  $t_1 \in (a,b)$ .

By that assumption  $\vec{\phi}_1(t_1),...,\vec{\phi}_n(t_1)$  are linearly dependent. This then means  $\mathbf{c}_1\vec{\phi}_1(t_1)+\cdots+\mathbf{c}_n\vec{\phi}_n(t_1)=\vec{0}$  for some  $\mathbf{c}_1,...,\mathbf{c}_n\in\mathbb{R}$  not all zero.

Then,  $\vec{\varphi}(t)=\mathbb{c}_1\vec{\phi}_1(t)+\cdots+\mathbb{c}_n\vec{\phi}_n(t)$  satisfies the IVP:

$$\begin{cases} \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A(t)\vec{x} \\ \vec{x}(t_1) = \vec{\varphi}(t_1) = \vec{0} \end{cases}$$

Since  $\vec{0}$  is a solution to the IVP, by the existence and uniqueness theorem,  $\vec{\varphi}(t) = \mathbb{c}_1 \vec{\phi}_1(t) + \cdots + \mathbb{c}_n \vec{\phi}_n(t) = \vec{0}$  for all  $t \in (a,b)$ .

Therefore:

$$\left(\vec{\phi}_1(t) \ \cdots \ \vec{\phi}_n(t)\right) \begin{pmatrix} \mathbb{c}_1 \\ \vdots \\ \mathbb{c}_n \end{pmatrix} = \vec{0} \Rightarrow W\left[\vec{\phi}_1(t), \cdots, \vec{\phi}_n(t)\right] = 0$$

for all  $t \in (a, b)$ , a contradiction.

#### **Abel's Theorem**

If W is the Wronskian of n solutions to  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A(t)\vec{x}$ , then  $\frac{\mathrm{d}W}{\mathrm{d}t}=\mathrm{tr}(A(t))W$ .

## **Fundamental Matrix**

$$\left(\vec{\phi}_1(t) \ \cdots \ \vec{\phi}_n(t)\right)$$

#### **Solutions from Fundamental Matrix**

Assuming  $\vec{\phi}_1(t), \cdots, \vec{\phi}_n(t)$  form a FSOS, every solution is of the form:

$$\mathbb{c}_1 \vec{\phi}_1(t) + \dots + \mathbb{c}_n \vec{\phi}_n(t) = \underbrace{\left(\vec{\phi}_1(t) \ \cdots \ \vec{\phi}_n(t)\right)}_{\text{Fundamental Matrix}} \underbrace{\begin{pmatrix} \mathbb{c}_1 \\ \vdots \\ \mathbb{c}_n \end{pmatrix}}_{\text{come vector in } \mathbb{P}^n}$$

#### **Example**

Suppose

$$\vec{x_1}(t) = \begin{pmatrix} 1+t^2 \\ t \end{pmatrix}, \vec{x_2}(t) = \begin{pmatrix} t \\ 1 \end{pmatrix}$$

are two solutions to a first-order 2-dimensional linear system  $\frac{\mathrm{d} \vec{x}}{\mathrm{d} t} = A(t) \vec{x}.$ 

- 1. Find the coefficient matrix A(t).
- 2. Find the general solution.
- 3. Find a fundamental matrix.

#### Solution

1.

$$\binom{2t}{1} = A(t) \binom{1+t^2}{t}$$

$$\binom{1}{0} = A(t) \binom{t}{1}$$

Therefore, by the definition of matrix multiplication:

$$\begin{pmatrix} 2t & 1 \\ 1 & 0 \end{pmatrix} = A(t) \begin{pmatrix} 1+t^2 & t \\ t & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1+t^2 & t \\ t & 1 \end{pmatrix}^{-1} = \underbrace{\frac{1}{1+t^2-t^2}}_{1} \begin{pmatrix} 1 & -t \\ -t & 1+t^2 \end{pmatrix}$$

Then,

$$A(t) = \begin{pmatrix} 2t & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -t \\ -t & 1 + t^2 \end{pmatrix}$$

2.

Note that all entries of A(t) are continuous over  $\mathbb{R}$ .

$$Wigg[ig(1+t^2\ 1ig),ig(t\ 1ig)igg] = 1+t^2-t^2 = 1 
eq 0$$

By a theorem, the general solution is

$$\mathbf{c}_1 \begin{pmatrix} 1 + t^2 \\ 1 \end{pmatrix} + \mathbf{c}_n \begin{pmatrix} t \\ 1 \end{pmatrix}$$

3.

A fundamental matrix is

$$\begin{pmatrix} 1+t^2 & t \\ t & 1 \end{pmatrix}$$

# Chapter 12: Linear Systems with Constant Coefficients Homogenous Linear Systems with Constant Coefficients

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A\vec{x}, A \in M_n(\mathbb{R})$$
 
$$e^{tA} = I + \frac{tA}{1!} + \frac{t^2A^2}{2!} + \frac{t^3A^3}{3!} + \dots + \frac{t^nA^n}{n!} + \dots \quad \forall t \in \mathbb{R}$$
 
$$\frac{\mathrm{d}}{\mathrm{d}t}(e^{tA}) = 0 + A + \frac{2tA^2}{2!} + \frac{3t^2A^3}{3!} + \dots + \frac{nt^{n-1}A^n}{n!} + \dots$$
 
$$= \sum_{r=1}^{\infty} \frac{nt^{n-1}A^n}{n!} = \sum_{r=1}^{\infty} \frac{t^{n-1}A^n}{(n-1)!} = \sum_{r=0}^{\infty} \frac{t^nA^{n+1}}{n!} = A \sum_{r=0}^{\infty} \frac{t^nA^n}{n!} = Ae^{tA}$$

We can form solutions here:

$$\frac{\mathrm{d}}{\mathrm{d}t}\big(e^{tA}\big)=Ae^{tA}$$
 
$$\frac{\mathrm{d}}{\mathrm{d}t}\big(j\mathrm{th~column~of}~e^{tA}\big)=A\big(j\mathrm{th~column~of}~e^{tA}\big)$$

Therefore, the columns of  $e^{tA}$  are solutions to  $\frac{d\vec{x}}{dt} = A\vec{x}$ .

The Wronskian of these solutions is  $\det(e^{tA})$ . At t=0,  $\det(e^{0A})=\det(I)=1\neq 0$ . Therefore,  $e^{tA}$  is a fundamental matrix.

Then, this makes  $\vec{x}(t) = e^{tA}\vec{c}$ ,  $\vec{c} \in \mathbb{R}^n$  the solution.

How do we evaluate  $e^{tA}$ ?

Set  $D = \frac{\mathrm{d}}{\mathrm{d}t}$ .

$$D[t] = Ae^{tA}, D^2\left[e^{tA}\right] = A^2e^{tA}, ..., D^k\left[e^{tA}\right] = A^ke^{tA}$$

For every polynomial p(z) we have  $P(D)\left[e^{tA}\right]=p(A)e^{tA}$ .

If p(A)=0, then  $p(D)\big[e^{tA}\big]=0$ . Therefore, entries of  $e^{tA}$  satisfy the differential equation P(D)[y]=0.

In order to find these entries, we need initial values.

If the degree of p is m, we need m initial values:  $y(0), y'(0), ..., y^{(m-1)}(0)$ .

These will then be:

$$\left. e^{tA} \right|_{t=0} = I; \frac{\mathrm{d}}{\mathrm{d}t} (e^{tA}) \right|_{t=0} = A, ..., \frac{\mathrm{d}^{m-1}}{\mathrm{d}t^{m-1}} (e^{tA}) \right|_{t=0} = A^{m-1}$$

Suppose  $N_0(t),...,N_{m-1}(t)$  form the NFSoS for p(D)[y]=0 at  $t_0=0$ .

Then, 
$$e^{tA} = N_0(t)I + N_1(t)A + \dots + N_{m-1}(t)A^{m-1}$$
.

#### Example

Compute  $e^{tA}$  where  $A=\begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$ . Use this to solve  $\vec{x}=A\vec{x},\vec{x}(0)=\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ .

#### Solution

The characteristic polynomial of A is:

$$p(z) = \det\begin{pmatrix} 3-z & 2\\ 2 & 3-z \end{pmatrix} = (3-z)^2 - 4$$

By the Cayley-Hamilton theorem, p(A) = 0, so we can use the process outlined above.

Find the NFSoS for p(D)[y] = 0:

$$(3-z)^2 - 4 = 0 \Rightarrow z \in \{1, 5\} \Rightarrow y = \mathbb{c}_1 e^t + \mathbb{c}_2 e^{5t}$$

$$\begin{cases} y(0) = y_0 \\ y'(0) = y_1 \end{cases} \Rightarrow \begin{cases} \mathbb{c}_1 + \mathbb{c}_2 = y_0 \\ \mathbb{c}_1 + 5\mathbb{c}_2 = y_1 \end{cases} \Rightarrow \begin{cases} \mathbb{c}_1 = \frac{5y_0 - y_1}{4} \\ \mathbb{c}_2 = \frac{y_1 - y_0}{4} \end{cases}$$

$$\Rightarrow y = \left(\frac{5y_0 - y_1}{4}\right)e^t + \left(\frac{y_1 - y_0}{4}\right)e^{5t}$$
$$= y_0 \left(\frac{5e^t - e^{5t}}{4}\right) + y_1 \left(\frac{e^{5t} - e^t}{4}\right)$$

$$\begin{split} e^{tA} &= \left(\frac{5e^t - e^{5t}}{4}\right)I + \left(\frac{e^{5t} - e^t}{4}\right)A \\ &= \begin{pmatrix} \frac{1}{4}(5e^t - e^{5t}) & 0 \\ 0 & \frac{1}{4}(5e^t - e^{5t}) \end{pmatrix} + \begin{pmatrix} \frac{3}{4}(e^{5t} - e^t) & \frac{1}{2}(e^{5t} - e^t) \\ \frac{1}{2}(e^{5t} - e^t) & \frac{3}{4}(e^{5t} - e^t) \end{pmatrix} \end{split}$$

The general solution is  $\vec{x}=e^{tA}\vec{\mathbf{c}}$ . The solution to the given IVP satisfies  $\vec{x}(0)=\begin{pmatrix}1\\2\end{pmatrix}\Rightarrow e^{0A}\vec{\mathbf{c}}=\begin{pmatrix}1\\2\end{pmatrix}\Rightarrow\vec{\mathbf{c}}=\begin{pmatrix}1\\2\end{pmatrix}$ .  $\vec{x}=e^{tA}\begin{pmatrix}1\\2\end{pmatrix}=\cdots$ 

# A different way to find $e^{tA}$

 $e^{tA}$  is a fundamental matrix.

Assume  $\Phi(t)$  is also a fundamental matrix.

Then, the first column of  $\Phi(t)=e^{tA}\vec{\mathbb{c}_1}$  and the second column of  $\Phi(t)=e^{tA}\vec{\mathbb{c}_2}$ 

$$\Phi(t) = e^{tA}C, C = (\vec{c_1}, ..., \vec{c_n})$$

$$\Phi(0) = C \Rightarrow \Phi(t) = e^{tA}\Phi(0) \Rightarrow e^{tA} = \Phi(t)(\Phi(0))^{-1}$$

#### **Example**

Solve the IVP:

$$\begin{cases} x' = 2x + y \\ y' = x + 2y \\ x(0) = 1 \\ y(0) = -1 \end{cases}$$

#### **Solution**

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \xrightarrow{\text{characteristic polynomial}} p(z) = (2-z)^2 - 1$$

$$p(z) = 0 \Rightarrow z \in \{1, 3\} : p(D)[y] = 0 \Rightarrow y = \mathbb{C}_1 e^t + \mathbb{C}_2 e^{3t}$$

Find the NFSoS at  $t_0 = 0$ :

$$\begin{cases} y(0) = y_0 \\ y'(0) = y_1 \end{cases} \Rightarrow \begin{cases} \mathbb{c}_1 + \mathbb{c}_2 = y_0 \\ \mathbb{c}_1 + 3\mathbb{c}_2 = y_1 \end{cases} \Rightarrow \begin{cases} \mathbb{c}_1 = \frac{3y_0 - y_1}{2} \\ \mathbb{c}_2 = \frac{y_1 - y_0}{2} \end{cases}$$
 
$$\Rightarrow y = \frac{3y_0 - y_1}{2} e^t + \frac{y_1 - y_0}{2} e^{3t} = y_0 \underbrace{\left(\frac{3e^t - e^{3t}}{2}\right)}_{N_0} + y_1 \underbrace{\left(\frac{e^{3t} - e^t}{2}\right)}_{N_1} \end{cases}$$

$$e^{tA} = \left(\frac{3e^t - e^{3t}}{2}\right)I + \left(\frac{e^{3t} - e^t}{2}\right)A$$

$$\vdots$$

The solution is 
$$\vec{x}(t) = e^{tA} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

#### **Example**

Evaluate  $e^{tA}$  where

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

#### Solution

The characteristic polynomial is  $p(z) = \det(A - zI) = (1 - z)^2(2 - z)$ .

The general solution to P(D)[y] = 0 is  $y = \mathbb{C}_1 e^t + \mathbb{C}_2 t e^t + \mathbb{C}_3 e^{2t}$ .

$$\begin{cases} y(0) = y_0 \\ y'(0) = y_1 \Rightarrow \begin{cases} \mathbb{c}_1 + \mathbb{c}_3 = y_0 \\ \mathbb{c}_1 + \mathbb{c}_2 + 2\mathbb{c}_3 = y_1 \end{cases} \Rightarrow \begin{cases} \mathbb{c}_1 = 2y_1 - y_2 \\ \mathbb{c}_2 = 3y_1 - 2y_0 - y_2 \\ \mathbb{c}_3 = y_2 - 2y_1 + y_0 \end{cases} \\ \Rightarrow y = (2y_1 - y_2)e^t + (3y_1 - 2y_0 - y_2)te^t + (y_2 - 2y_1 + y_0)e^{2t} \\ \Rightarrow y = y_0\underbrace{\left(-2te^t + e^{2t}\right)}_{N_0} + y_1\underbrace{\left(2e^t + 3te^t - 2e^{2t}\right)}_{N_1} + y_2\underbrace{\left(-e^t - te^t + e^{2t}\right)}_{N_3} \\ \Rightarrow e^{tA} = N_0(t)I + N_1(t)A + N_2(t)A^2 \end{cases}$$

#### **Example**

$$\begin{cases} \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A\vec{x} \\ \vec{x}(0) = \vec{x_0} \end{cases}$$

#### Solution

The general solution to  $rac{\mathrm{d} ec{x}}{\mathrm{d} t} = A ec{x}$  is  $ec{x} = e^{tA} ec{\mathtt{c}}$ , where  $ec{\mathtt{c}} \in \mathbb{R}$ .

$$t_0 \Rightarrow \vec{x}(0) = e^{0A} \vec{\mathbb{c}} = \vec{\mathbb{c}} : \begin{tabular}{c} \vec{x}(t) = e^{tA} \vec{x_0} \end{tabular}$$

#### Example

Prove if AB = BA, then  $e^A e^B = e^{A+B}$ .

#### Scratch

$$@t = 0, \begin{cases} e^{tA}e^{tB} = I \cdot I = I \\ e^{t(A+B)} = I \end{cases}$$
 
$$\frac{\mathrm{d}}{\mathrm{d}t} \left( e^{t(A+B)} \right) = (A+B)e^{t(A+B)}$$
 
$$\frac{\mathrm{d}}{\mathrm{d}t} \left( e^{tA}e^{tB} \right) = Ae^{tA}e^{tB} + e^{tA}Be^{tB}$$
 
$$= \left( Ae^{tA} + e^{tA}B \right)e^{tB}$$
 So, for  $(A+B)e^{t(A+B)} = \left( Ae^{tA} + e^{tA}B \right)e^{tB}$ ,  $e^{tA}B = Be^{tA}$ . 
$$@t = 0 : \begin{cases} e^{tA}B = B \\ Be^{tA} = B \end{cases}$$
 
$$\frac{\mathrm{d}}{\mathrm{d}t} \left( e^{tA}B \right) = Ae^{tA}B \Rightarrow \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A\vec{x}$$
 
$$\frac{\mathrm{d}}{\mathrm{d}t} \left( Be^{tA} \right) = BAe^{tA} = ABe^{tA} \Rightarrow \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A\vec{x}$$

#### **Solution**

Consider the system  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A\vec{x}$  called \*.(

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t(Be^{tA})} &= BAe^{tA} = A\big(Be^{tA}\big) \Rightarrow \text{columns of } Be^{tA} \text{ satisfy } * \\ \frac{\mathrm{d}}{\mathrm{d}t}\big(e^{tA}B\big) &= A\big(e^{tA}B\big) \Rightarrow \text{columns of } e^{tA}B \text{ satisfy } * \\ e^{tA}B\big|_{t=0} &= e^{0A}B = IB = B \\ Be^{tA}\big|_{t=0} &= Be^{0A} = BI = B \\ &\Rightarrow e^{tA}B\big|_{t=0} &= Be^{tA}\big|_{t=0} \end{split}$$

 $e^{tA}e^{tB} = e^{t(A+B)}$ 

Thus, columns of  $e^{tA}B$  and  $Be^{tA}$  satisfy the same IVP. Thus,  $e^{tA}B=Be^{tA}$  by the existence and uniqueness theorem. Call that result 1.

Consider the system  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=(A+B)\vec{x}$ , called \*\*.

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( e^{tA} e^{tB} \right) = A e^{tA} e^{tB} + e^{tA} B e^{tB} \stackrel{\text{by 1}}{=} A e^{tA} e^{tB} + B e^{tA} e^{tB} = (A+B) \left( e^{tA} e^{tB} \right)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( e^{t(A+B)} \right) = (A+B) e^{t(A+B)}$$

Thus, columns of  $e^{tA}e^{tB}$  and  $e^{t(A+B)}$  satisfy \* \*.

$$\begin{aligned} e^{tA}e^{tB}\big| &= e^{0A}e^{0B} = I \cdot I = I \\ e^{t(A+B)}\big| &= e^{0(A+B)} = I \end{aligned}$$

Thus, by the existence and uniqueness theorem,  $e^{tA}e^{tB}=e^{t(A+B)}$ 

# **Eigenpair Method**

We know that  $e^{aT}$  is a solution to y'=ay.

This raises the question, for  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A\vec{x}$ , is  $\vec{x}=e^{ta}\vec{v}$  a solution?

$$ae^{ta}\vec{v}=Ae^{ta}\vec{v}$$
 
$$a\vec{v}=A\vec{v}\Rightarrow (a,\vec{v}) \text{ is an eigenpair of } A$$

Suppose  $(\lambda_1, \vec{v}_1), ..., (\lambda_m, \overrightarrow{v_m})$  are eigenpairs of A such that  $\vec{v}_1, \overrightarrow{v_m}$  are linearly independent. Then  $e^{\lambda_1 t} \vec{v}_1, ..., e^{\lambda_m t}, \overrightarrow{v_m}$  are linearly independent over  $\mathbb C$  (complex) solutions of  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A\vec{x}$ .

Reason:

Suppose  $\sum_{j=1}^m \mathbb{c}_j e^{\lambda_j t} \vec{v_j} = 0$  for all  $t \in \mathbb{R}$  and some  $\mathbb{c}_1,...,\mathbb{c}_m \in \mathbb{C}$ .  $\sum_{j=1}^m \mathbb{c}_j \vec{v_j} = 0 \Rightarrow \mathbb{c}_1 = ... = \mathbb{c}_m = 0$ 

## Theorem for eigenpair method

$$\vec{x}(t) = e^{\lambda t} \vec{v}$$

is a solution to  ${{\rm d} \vec x \over {{
m d} t}} = A \vec x$  iff  $(\lambda, \vec v)$  is an eigenpair for A.

## **Example**

Solve by eigenpair method:

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \begin{pmatrix} 1 & 2\\ 4 & 3 \end{pmatrix} \vec{x}$$

#### Solution

Characteristic polynomial of A

$$\det \begin{pmatrix} 1-z & 2 \\ 4 & 3-z \end{pmatrix} = z^2 - 4z + 3 - 8 = (z+1)(z-5) \Rightarrow \lambda_1 = -1, \lambda_2 = 5$$

$$\text{For } \lambda = -1 \Rightarrow \begin{pmatrix} 2 & 2 \\ 4 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \vec{0}$$

$$\text{For } \lambda = 5 \Rightarrow \begin{pmatrix} -4 & 2 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \vec{0}$$

 $\left(-1, \binom{1}{-1}\right) \wedge \left(5, \binom{1}{2}\right)$  are eigenpairs corresponding to linearly independent eigenvectors.

Therefore, the general solution is

$$\mathbb{C}_1 e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \mathbb{C}_2 e^{5t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

#### **Example**

Solve using the eigenpair method.

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \vec{x}$$

#### Solution

$$\begin{split} p(z) &= (1-z)(3-z) + 2 = z^2 - 4z + 5 = (z-2)^2 + 1 \to z = 2 \pm i. \\ \text{for } z &= 2+i: \qquad \binom{-1-i}{-1} \frac{2}{1-i} \binom{1-i}{1} = \binom{0}{0} \\ \left(2+i, \binom{1-i}{1}\right) \text{ is an eigenpair} \\ &\Rightarrow \vec{x}(t) = e^{(2+i)t} \binom{1-i}{1} = e^{2t} (\cos(t) + i\sin(t)) \binom{1-i}{1} \\ &= e^{2t} \binom{\cos(t) + \sin(t) + i(-\cos(t) + \sin(t))}{\cos(t) + i\sin(t)} \end{split}$$

Two solutions to  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$  are:

$$\begin{pmatrix} e^{2t}(\cos(t) + \sin(t)) \\ e^{2t}\cos(t) \end{pmatrix}, \begin{pmatrix} e^{2t}(\sin(t) - \cos(t)) \\ e^{2t}\sin(t) \end{pmatrix}$$

The general solution is:

$$\mathbb{c}_1 \begin{pmatrix} e^{2t}(\cos(t) + \sin(t)) \\ e^{2t}\cos(t) \end{pmatrix} + \mathbb{c}_2 \begin{pmatrix} e^{2t}(\sin(t) - \cos(t)) \\ e^{2t}\sin(t) \end{pmatrix}$$

#### **Example**

Find  $e^{tA}$  for every  $A\in M_2(\mathbb{R}).$  Use that to find the general solution  $rac{\mathrm{d}ec{x}}{\mathrm{d}t}=Aec{x}$ 

#### **Solution**

Let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Then:

$$p(z) = (a-z)(d-z) - bc = z^2 - (a+d)z + ad - bc = z^2 - (\operatorname{tr} A)z + \det A = (z-\lambda_1)(z-\lambda_2)$$

Case I:  $\lambda_1 \neq \lambda_2$ ,  $\lambda_1, \lambda_2 \in \mathbb{R}$ 

The general solution to P(D)[y]=0 is  $y={\mathbb C}_1e^{\lambda_1t}+{\mathbb C}_2e^{\lambda_2t}$ 

$$\begin{cases} \mathbb{c}_1 + \mathbb{c}_2 = y_0 \\ \lambda_1 \mathbb{c}_1 + \lambda_2 \mathbb{c}_2 = y_1 \end{cases} \Rightarrow \begin{cases} \mathbb{c}_1 = \frac{y_1 - \lambda_2 y_0}{\lambda_1 - \lambda_2} \\ \mathbb{c}_2 = \frac{\lambda_1 y_0 - y_1}{\lambda_1 - \lambda_2} \end{cases}$$

Therefore:

$$\begin{split} y &= \mathbb{c}_1 e^{\lambda_1 t} + \mathbb{c}_2 e^{\lambda_2 t} \\ &= \frac{y_1 - \lambda_2 y_0}{\lambda_1 - \lambda_2} e^{\lambda_1 t} + \frac{\lambda_1 y_0 - y_1}{\lambda_1 - \lambda_2} e^{\lambda_2 t} \\ &= y_0 \left( \frac{\lambda_1 e^{\lambda_1 t} - \lambda_2 e^{\lambda_1 t}}{\lambda_1 - \lambda_2} \right) + y_1 \left( \frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2} \right) \end{split}$$

Therefore:

$$\left(\frac{\lambda_1 e^{\lambda_1 t} - \lambda_2 e^{\lambda_1 t}}{\lambda_1 - \lambda_2}\right) I + \left(\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2}\right) A$$

Alternatively, we can use the eigenpair method.

 $(A-\lambda_1I)(A-\lambda_2I)=0\Rightarrow$  a nonzero column of  $A-\lambda_2I$  is an eigenvector for  $\lambda_1$ 

Use this to find a fundamental matrix, X(t), and then use  $e^{tA} = X(t) [X(0)]^{-1}$ 

Case II: 
$$\lambda_1 = \lambda_2 \Rightarrow \lambda_1, \lambda_2 \in \mathbb{R}$$

NFSOS:

$$\begin{split} y &= \mathbf{c}_1 e^{\lambda_1 t} + \mathbf{c}_2 t e^{\lambda_2 t} \\ \begin{cases} \mathbf{c}_1 &= y_0 \\ \lambda_1 \mathbf{c}_1 + \mathbf{c}_2 &= y_1 \end{cases} \Rightarrow \begin{cases} \mathbf{c}_1 &= y_0 \\ \mathbf{c}_2 &= y_1 - \lambda_1 y_0 \end{cases} \\ y &= y_0 e^{\lambda_1 t} + (y_1 - \lambda_1 y_0) t e^{\lambda_1 t} \\ &= y_0 \left( e^{\lambda_1 t} - \lambda_1 t e^{\lambda_1 t} \right) + y_1 t e^{\lambda_1 t} \end{split}$$

Therefore:

$$e^{tA} = \left(e^{\lambda_1 t} - \lambda_1 t e^{\lambda_1 t}\right) I + \left(t e^{\lambda_1 t}\right) A$$

If 
$$A \vec{v} = \lambda \vec{v} \Rightarrow e^{tA} \vec{v} = \left(e^{\lambda_1 t} - \lambda_1 t e^{\lambda_1 t}\right) \vec{v} + \left(t e^{\lambda_1 t}\right) \lambda \vec{v} = e^{\lambda_1 t} \vec{v}$$

A second linearly independent solution can be found by picking  $\vec{w}$  that is not a multiple of  $\vec{v}$ :

$$e^{tA}\vec{w} = e^{\lambda_1 t}\vec{w} - \lambda_1 t e^{\lambda_1 t}\vec{w} + t e^{\lambda_1 t}A\vec{w}$$

Alternatively,

(

$$e^{tA} = e^{t\lambda I}e^{tA - t\lambda I} = \begin{pmatrix} e^{t\lambda_1} & 0 \\ 0 & e^{t\lambda_1} \end{pmatrix} \left( I + (t(A - \lambda_1 I)) + \underbrace{\frac{t^2(A - \lambda_1 I)^2}{2!} + \cdots}_{\text{all zero by the Cayley-Hamilton theorem}} \right) = e^{t\lambda_1}((1 - \lambda_1 t)I + tA)$$

Case III:  $\lambda_1=\overline{\lambda_2}$ ,  $\lambda_1,\lambda_2\in\mathbb{C}$ 

The solution is online.

Suppose

$$\begin{pmatrix} e^t \\ e^t \end{pmatrix}, \begin{pmatrix} e^{2t} \\ 2e^{2t} \end{pmatrix}$$

form a FSOS for  $\vec{x}' = A\vec{x}$ .

- 1. Find A.
- 2. Find  $e^{tA}$

### Solution

Substitute:

$$\begin{pmatrix} e^t \\ e^t \end{pmatrix} = A \begin{pmatrix} e^t \\ e^t \end{pmatrix}$$
 
$$\begin{pmatrix} 2e^{2t} \\ 4e^{2t} \end{pmatrix} = A \begin{pmatrix} e^{2t} \\ 2e^{2t} \end{pmatrix}$$
 
$$\begin{pmatrix} e^t & 2e^{2t} \\ e^t & 4e^{2t} \end{pmatrix} = A \begin{pmatrix} e^t & e^{2t} \\ e^t & 2e^{2t} \end{pmatrix} \Rightarrow \cdots$$

Second method:

$$\begin{split} e^t \binom{1}{1}, \text{and } e^{2t} \binom{1}{2} \text{ are solutions} &\Rightarrow \left(1, \binom{1}{1}\right), \left(2, \binom{1}{2}\right) \\ A &= \binom{1}{1} \binom{1}{2} \binom{1}{0} \binom{1}{2} \binom{1}{1} \binom{1}{2}^{-1} (PDP^{-1}) \end{split}$$

2. Find  $e^{tA}$ 

$$X(t) = \begin{pmatrix} e^t & e^{2t} \\ e^t & 2e^{2t} \end{pmatrix}$$

Thus,

$$e^{tA} = \begin{pmatrix} e^t & e^{2t} \\ e^t & 2e^{2t} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1}$$

### **Variation of Parameters**

We need to find  $Y_p$ .

Suppose  $\Phi(t)$  is a fundamental matrix for  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A\vec{x}$ 

Objective: find a particular solution for  $rac{\mathrm{d} ec{x}}{\mathrm{d} t} = A ec{x} + ec{f}(t)$ 

For example, we did the following:

$$y''+y=0 \wedge y''+y=t^2\tan(t) \Rightarrow y_p=u_1(t)\cos(t)+u_2(t)\sin(t)$$

Now, we will do something similar:

Let 
$$\vec{x_p} = \Phi(t) \vec{u}(t)$$

Substitute into the nonhomogenous system:

$$\underbrace{\Phi'(t)\vec{u}(t) + \Phi(t)\vec{u}'(t)}_{\frac{\text{d.}\vec{x}}{\frac{\vec{x}t}}} = A\Phi(t)\vec{u}(t) + \vec{f}(t)$$

Since every column of  $\Phi(t)$  is a solution to  $\vec{x}' = A\vec{x}$ ,  $\Phi'(t) = A\Phi(t)$ .

$$A\Phi(t)\vec{u}(t) + \Phi(t)\vec{u}'(t) = A\Phi(t)\vec{u}(t) + \vec{f}(t)$$

$$\Phi(t)\vec{u}'(t) = \vec{f}(t) \Rightarrow \vec{u}'(t) = (\Phi(t))^{-1}\vec{f}(t)$$

$$\Rightarrow \vec{u}(t) = \int (\Phi(t))^{-1}\vec{f}(t)dt$$

Suppose we'd like to solve the following:

$$\begin{cases} \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A\vec{x} + \vec{f}(t) \\ \vec{x}(t_0) = \vec{x_0} \end{cases}$$

We know we need

$$\begin{split} \Phi(t_0) \vec{u}(t_0) &= \vec{x_0} \Rightarrow \vec{u}(t_0) = [\Phi(t_0)]^{-1} \vec{x_0} \\ &\Rightarrow \vec{u}(t) = \vec{u}(t_0) + \int_{t_0}^t (\Phi(t))^{-1} \vec{f}(t) \mathrm{d}t \\ \\ \vec{x}(t) &= \Phi(t) [\Phi(t_0)]^{-1} \vec{x_0} + \Phi(t) \int_{t_0}^t (\Phi(s))^{-1} \vec{f}(s) \mathrm{d}s \\ \\ \vec{x}(t) &= e^{tA} e^{-t_0 A} \vec{x_0} + \int_{t_0}^t e^{tA} e^{-sA} \vec{f}(s) \mathrm{d}s \\ \\ &= e^{(t-t_0)A} \vec{x_0} + \int_{t_0}^t e^{(t-s)A} \vec{f}(s) \mathrm{d}s \end{split}$$

### **Example**

Solve:

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \begin{pmatrix} 4 & 5 \\ -2 & -2 \end{pmatrix} \vec{x} + \begin{pmatrix} 4e^t \cos(t) \\ 0 \end{pmatrix}, \vec{x}(0) = 0$$

Solution

$$e^{tA} = \begin{pmatrix} e^t \cos(t) + 3e^t \sin(t) & 5e^t \sin(t) \\ -2e^t \sin(t) & e^t \cos(t) - 3e^t \sin(t) \end{pmatrix}$$

Then

$$\begin{split} \vec{x}(t) &= \vec{0} + e^{tA} \int_0^t e^{-sA} \binom{4e^s \cos(s)}{0} \mathrm{d}s \\ &= e^{tA} \int_0^t e^{-s} \binom{\cos(-s) + 3\sin(-s)}{-2\sin(-s)} \frac{5\sin(-s)}{\cos(-s) - 3\sin(-s)} \binom{4e^s \cos(s)}{0} \mathrm{d}s \\ &= 4e^{tA} \int_0^t \binom{\cos^2(s) - 3\sin(s)\cos(s)}{2\sin(s)\cos(s)} \mathrm{d}s \\ &= \cdots \end{split}$$

## **Laplace Transform**

Define:

$$\mathcal{L} \left\{ \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix} \right\} = \begin{pmatrix} \mathcal{L} \{x_1(t)\} \\ \vdots \\ \mathcal{L} \{x_n(t)\} \end{pmatrix}$$

 $\mathcal{L}\{\vec{x}'(t)\}(s) = s\mathcal{L}\{\vec{x}(t)\}(s) - \vec{x}(0)$ 

Then:

$$\vec{x}'(t) = A\vec{x}(t) + \vec{f}(t)$$
 Suppose  $\vec{x}(s) = \mathcal{L}\{\vec{x}(t)\}(s)$  and  $\vec{F}(s) = \mathcal{L}\{\vec{f}(t)\}(s)$ . 
$$s\vec{x}(s) - \vec{x}(0) = A\vec{x}(s) + \vec{F}(s)$$
 
$$\Rightarrow s\vec{x} - A\vec{x}(s) = \vec{F}(s) + \vec{x}(0)$$
 
$$\Rightarrow (sI - A)\vec{x}(S) = \vec{F}(s) + \vec{x}(0)$$
 
$$\Rightarrow \vec{x}(s) = (sI - A)^{-1}(F(s) - \vec{x}(0))$$

## **Example**

Solve using the method of Laplace transforms:

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \begin{pmatrix} 1 & 4\\ 1 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} e^t\\ 0 \end{pmatrix}, \vec{x}(0) = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

### **Solution**

Let  $X(s) = \mathcal{L}\{\vec{x}\}(s)$ .

$$sX(S) - \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} X(s) + \begin{pmatrix} \frac{1}{s-1} \\ 0 \end{pmatrix}$$

Move X(s) terms to one side:

$$sIX(S) - \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} X(s) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} \frac{1}{s-1} \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} s-1 & -4 \\ -1 & s-1 \end{pmatrix} X(s) = \begin{pmatrix} \frac{1}{s-1} \\ 1 \end{pmatrix}$$

Left-multiply the inverse:

$$\begin{split} X(s) &= \binom{s-1}{-1} \frac{-4}{s-1}^{-1} \binom{\frac{1}{s-1}}{1} \\ &= \frac{1}{(s-1)^2 - 4} \binom{s-1}{1} \frac{4}{s-1} \binom{\frac{1}{s-1}}{1} \\ &= \binom{\frac{5}{(s-3)(s+1)}}{\frac{1}{(s-3)(s+1)(s-1)} + \frac{s-1}{(s-3)(s+1)}} \end{split}$$

The inverse Laplace can be found via partial fractions, and results in:

$$\vec{x}(t) = \mathcal{L}^{-1}\{X(s)\} = \begin{pmatrix} \frac{5(e^{4t}-1)}{4e^t} \\ \frac{5-2e^{2t}+5e^{4t}}{8e^t} \end{pmatrix}$$

# **Chapter 13: Qualitative Theory of Differential Equations**

The main focus is on autonomous systems:

## **Definition of Autonomous System:**

Any system of this form is autonomous:

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \vec{f}(\vec{x})$$

## **Stationary**

A solution to a system  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=\vec{f}(\vec{x})$  is called stationary, equilibrium, fixed point or a critical point if it is a constant function.

## **Semistationary**

A solution to a system  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=\vec{f}(\vec{x})$  is called semistationary if all components of  $\vec{x}(t)$ , except for one, are constant.

#### **Example**

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = (x-1)y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = xy \end{cases}$$

#### Solution

Some solutions for this are

$$\begin{cases} x = 1 \\ y = e^t, \begin{cases} x = 1 \\ x = 0 \end{cases}$$

It also seems to be that you can't cross the same value from different starting solutions.

### **Example**

$$\begin{cases} x' = y^2 - 1 \\ y' = xy^2 + x \end{cases}$$

#### Solution

Find some stationary solutions:

$$\begin{cases} 0 = y^2 - 1 \Rightarrow y = \pm 1 \\ 0 = xy^2 + x \Rightarrow 0 = x(y^2 + 1) \Rightarrow 0 = x \end{cases}$$

To find the semistationary solutions, use one of those constraints, then solve.

### **Example**

$$\begin{cases} x' = x^2 - xy - x + y \\ y' = y(x^2 - 2x + 3) \end{cases}$$

#### Solution

$$\begin{cases} 0 = (x - y)(x - 1) \\ 0 = y(x^2 - 2x + 3) \end{cases} \Rightarrow \begin{cases} 0 = x(x - 1) \\ y = 0 \end{cases} \Rightarrow \begin{cases} x \in \{1, 0\} \\ y = 0 \end{cases}$$

The stationary solutions are (0,0),(1,0)

#### **Semistationary**

We need a constant x that makes x'=(x-y)(x-1) zero or a constant y that makes  $y(x^2-2x-3)$  zero. Therefore, x=1 or y=0.

$$\begin{split} x = 1 \Rightarrow y' = 2y \Rightarrow y = \mathbb{c}e^{2t}, \mathbb{c} \in \mathbb{R} \Rightarrow \left(1, \mathbb{c}e^{2t}\right) \\ x' = x^2 - x \Rightarrow \cdots \Rightarrow \left(\frac{1}{1 + \mathbb{c}e^t}, 0\right) \end{split}$$

### **Questions**

There are questions one would like to ask:

- 1. Are there stationary solutions?
- 2. Are there semistationary solutions?
- 3. What happens to a solution if the initial value is slightly modified?
- 4. What happens to a solution over the long run as t gets larger?
- 5. Are there periodic solutions?

## **Orbit Equation**

The orbit equation of the system

$$\begin{cases} x' = f(x, y) \\ y' = g(x, y) \end{cases}$$

is

$$g(x,y)\frac{\mathrm{d}x}{\mathrm{d}t} - f(x,y)\frac{\mathrm{d}y}{\mathrm{d}t}$$

### **Example**

$$\begin{cases} x' = 2y \\ y' = 2x - 4x^3 \end{cases}$$

$$2y'y = (2x - 4x^3)x'$$

$$2y'y + (4x^3 + 2x)x' = 0$$

$$2ydy + (4x^3 + 2x)dx = 0$$

$$\frac{\partial}{\partial y}(4x^3 - 2x) = 0 = \frac{\partial}{\partial x}(2y)$$

$$\varphi_x = 4x^3 - 2x \Rightarrow \varphi = x^4 - x^2 + f(y)$$

$$\varphi_y = 2y \Rightarrow \varphi = y^2 + g(x)$$

$$\therefore \varphi = x^2 - x^2 + y^2 + \mathbb{C}$$

$$\therefore x^4 - x^2 + y^2 = \mathbb{C}$$

## **Stability**

A solution  $\vec{arphi}_0(t)$  to  $\vec{x}' = \vec{f}(\vec{x})$  is stable if

$$\|\vec{\varphi}(0) - \vec{\varphi}_0(0)\| < \delta \Rightarrow \|\vec{\varphi}(t) - \vec{\varphi}_0(t)\| < \varepsilon \qquad \forall t, \forall \varepsilon > 0, \exists \delta > 0$$

For every solution  $\vec{\varphi}(t)$  to  $\vec{x}' = \vec{f}(\vec{x})$  and every future t. We assume all solutions are defined over the largest possible open interval.

#### **Notes**

All examples today will solutions to be a linear system with constant coefficients:

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = A\vec{x}$$

Vibe based definition:

 $\overrightarrow{\varphi_0}(t)$ , a solution to  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \vec{f}(\vec{x})$ , is called stable if every solution that starts near  $\overrightarrow{\varphi_0}(t)$  stays near  $\overrightarrow{\varphi_0}(t)$  forever.

### **Example**

$$A = \begin{pmatrix} -3 & 1 \\ -2 & 0 \end{pmatrix}$$

Show whether the  $\vec{0}$  solution to  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A\vec{x}$  is stable.

### **Solution**

The general solution is

$$\vec{\varphi}(t) = \mathbb{c}_1 e^{-2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \mathbb{c}_2 e^{-t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

#### **Scratch**

$$\forall \varepsilon>0, \exists \delta>0 \left\| \mathbb{c}_1 \binom{1}{1} + \mathbb{c}_2 \binom{1}{2} - \vec{0} \right\| \leq \delta \Rightarrow \left\| \mathbb{c}_1 e^{-2t} \binom{1}{1} + \mathbb{c}_2 e^{-t} \binom{1}{2} - \vec{0} \right\| \leq \varepsilon$$

Our objective is to find  $\delta$  in terms of  $\varepsilon$ .

$$\begin{split} &\left\|\mathbf{c}_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \mathbf{c}_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix}\right\| < \delta \Rightarrow \left\|\begin{pmatrix}\mathbf{c}_1 + \mathbf{c}_2 \\ \mathbf{c}_1 + 2\mathbf{c}_2 \end{pmatrix}\right\| < \delta \Rightarrow \sqrt{\left(\mathbf{c}_1 + \mathbf{c}_2\right)^2 + \left(\mathbf{c}_1 + 2\mathbf{c}_2\right)^2} < \delta \\ &\Rightarrow \begin{cases} |\mathbf{c}_1 + \mathbf{c}_2| < \delta \\ |\mathbf{c}_1 + 2\mathbf{c}_2| < \delta \end{cases} \Rightarrow \begin{cases} |\mathbf{c}_1| = |2(\mathbf{c}_1 + \mathbf{c}_2) - (\mathbf{c}_1 + 2\mathbf{c}_2)| \le 2|\mathbf{c}_1 + \mathbf{c}_2| + |\mathbf{c}_1 + 2\mathbf{c}_2| < 3\delta \\ |\mathbf{c}_2| = |(\mathbf{c}_1 + 2\mathbf{c}_2) - (\mathbf{c}_1 + \mathbf{c}_2)| \le |\mathbf{c}_1 + 2\mathbf{c}_2| + |\mathbf{c}_1 + \mathbf{c}_2| < 2\delta \end{cases} \end{split}$$

$$\left\| \mathbb{c}_1 + e^{-2t} \binom{1}{1} + \mathbb{c}_2 e^{-t} \binom{1}{2} \right\| \leq |\mathbb{c}_1| e^{-2t} \left\| \binom{1}{1} \right\| + |\mathbb{c}_2| e^{-t} \left\| \binom{1}{2} \right\| < (3\delta)(1) \left( \sqrt{2} \right) + (2\delta)(1) \left( \sqrt{5} \right) = \left( 3\sqrt{2} + 2\sqrt{5} \right) \delta < \varepsilon$$

Therefore, we will select

$$\delta = \frac{\varepsilon}{3\sqrt{2} + 2\sqrt{5}}$$

#### **Actual Solution**

Let  $\varepsilon > 0$ . Set  $\delta = \frac{\varepsilon}{100}$ . Note that the general solution is

$$\begin{split} \vec{x}(t) &= \mathbb{c}_1 e^{-2t} \binom{1}{1} + \mathbb{c}_2 e^{-t} \binom{1}{2} \\ \left\| \vec{x}(0) - \vec{0} \right\| < \delta \Rightarrow \left\| \mathbb{c}_1 \binom{1}{1} + \mathbb{c}_2 \binom{1}{2} \right\| < \delta \Rightarrow \sqrt{\left( \mathbb{c}_1 + \mathbb{c}_2 \right)^2 + \left( \mathbb{c}_1 + 2\mathbb{c}_2 \right)^2} < \delta \Rightarrow |\mathbb{c}_1 + \mathbb{c}_2| < \delta \wedge |\mathbb{c}_1 + 2\mathbb{c}_2| < \delta \\ \Rightarrow |\mathbb{c}_1| &= |2(\mathbb{c}_1 + \mathbb{c}_2) - (\mathbb{c}_1 + 2\mathbb{c}_2)| \le 2|\mathbb{c}_1 + \mathbb{c}_2| + |\mathbb{c}_1 + 2\mathbb{c}_2| < 3\delta \\ \left| \mathbb{c}_2 \right| &= |\mathbb{c}_1 + 2\mathbb{c}_2 - (\mathbb{c}_1 + \mathbb{c}_2)| \le |\mathbb{c}_1 + 2\mathbb{c}_2| + |\mathbb{c}_1 + \mathbb{c}_2| \le 2\delta \\ \text{If } t \ge 0, \text{ then } \left| \vec{x}(t) - \vec{0} \right| &= \left\| \mathbb{c}_1 e^{-2t} \binom{1}{1 + \mathbb{c}_2 e^{-t}(1, 2)} \right\| \\ &\le |\mathbb{c}_1| e^{-2t} \left\| \binom{1}{1} \right\| + |\mathbb{c}_2| e^{-t} \left\| \binom{1}{2} \right\| < (3\delta)(1) \left( \sqrt{2} \right) + (2\delta)(1) \left( \sqrt{5} \right) \\ &< 6\delta + 10\delta = 16\delta = \frac{16\varepsilon}{100} < \varepsilon \end{split}$$

Thus,  $\vec{0}$  is a stable solution.

### **Example**

$$A = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix}$$

Show whether the  $\vec{0}$  solution to  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A\vec{x}$  is stable.

### **Solution**

The general solution is  $\vec{x}(t) = \mathbb{c}_1 e^{2t} \binom{1}{1} + \mathbb{c}_2 e^{-t} \binom{-2}{1}$ 

We claim  $\vec{0}$  is unstable. On the contrary, assume  $\vec{0}$  is stable. Set  $\varepsilon=1$  in the definition of stability:

$$\exists \delta > 0 \ \left\| \mathbf{c}_1 \binom{1}{1} + \mathbf{c}_2 \binom{-2}{1} \right\| \leq \delta \Rightarrow \left\| \mathbf{c}_1 e^{2t} + \mathbf{c}_2 e^{-t} \binom{-2}{1} \right\| < 1$$

Set  $\mathbb{c}_1 = \frac{\delta}{2}, \mathbb{c}_2 = 0$ 

$$\left\| \frac{\delta}{2} \binom{1}{1} + (0) \binom{-2}{1} \right\| = \frac{\delta}{2} \sqrt{2} < \delta.$$

Thus, we must have  $\left\|\frac{\delta}{2}e^{2t}\binom{1}{1}\right\|\leq 1$  for all  $t\geq 0$ 

$$\Rightarrow \frac{\delta\sqrt{2}}{2}e^{2t}<1\Rightarrow \lim_{t\to\infty}\frac{\delta\sqrt{2}}{2}e^{2t}<1\Rightarrow \infty<1 \text{ a contradiction}$$

### **Example**

$$A = \begin{pmatrix} -2 & 1 \\ -4 & 2 \end{pmatrix}$$

Show whether the  $\vec{0}$  solution to  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}=A\vec{x}$  is stable.

### Solution

$$\begin{split} \vec{x}(t) &= \mathbb{c}_1 \binom{1-2t}{-4t} + \mathbb{c}_2 \binom{t}{2t+1} \\ \forall \varepsilon > 0 \exists \delta > 0 \qquad \left\| \mathbb{c}_1 \binom{1}{0} + \mathbb{c}_2 \binom{0}{1} - \vec{0} \right\| < \delta \Rightarrow \left\| \mathbb{c}_1 \binom{1-2t}{-4t} + \mathbb{c}_2 \binom{t}{2t+1} \right\| < \varepsilon \end{split}$$

We claim that  $\vec{0}$  is unstable. On the contrary, assume  $\vec{0}$  is stable.

Let  $\varepsilon = 1$  in the definition of a stable solution:

$$\exists \delta > 0 \qquad \left\| \mathbf{c}_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \mathbf{c}_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \vec{0} \right\| < \delta \Rightarrow \left\| \mathbf{c}_1 \begin{pmatrix} 1 - 2t \\ -4t \end{pmatrix} + \mathbf{c}_2 \begin{pmatrix} t \\ 2t + 1 \end{pmatrix} \right\| < 1$$

Choose  $c_1 = \frac{\delta}{2}$ ,  $c_2 = 0$ :

$$\left\|\frac{\delta}{2}\binom{1}{0}+(0)\binom{0}{1}-\vec{0}\right\|=\frac{\delta}{2}<\delta$$

Thus  $\forall t \geq 0$ :

$$\left\|\frac{\delta}{2}\binom{1-2t}{-4t}\right\| < 1 \Rightarrow \frac{\delta}{2}\sqrt{\left(1-2t\right)^2+16t^2} < 1 \Rightarrow \frac{\delta}{2}\sqrt{16t^2} < 1 \Rightarrow 2\delta|t| < 1 \Rightarrow \lim_{t \to \infty} 2\delta|t| < 1 = \infty < 1 \text{ a contradiction}$$

$$A = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$$

**Solution** 

$$\begin{split} \vec{x}(t) &= e^{2it} \binom{i}{-1} = \binom{-i\cos(2t) - \sin(2t)}{-\cos(2t) - i\sin(2t)} \\ & \div \vec{x}(t) = \mathbb{c}_1 \binom{\sin(2t)}{\cos(2t)} + \mathbb{c}_2 \binom{\cos(2t)}{-\sin(2t)} \end{split}$$

**Scratch** 

$$\begin{split} & \left\| \mathbf{c}_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \mathbf{c}_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\| < \delta \Rightarrow \sqrt{\mathbf{c}_1^2 + \mathbf{c}_2^2} < \delta \Rightarrow |\mathbf{c}_1| < \delta, |\mathbf{c}_2| < \delta \\ & \Rightarrow |\mathbf{c}_1| \left\| \begin{pmatrix} \sin(2t) \\ \cos(2t) \end{pmatrix} \right\| + |\mathbf{c}_2| \left\| \begin{pmatrix} \cos(2t) \\ -\sin(2t) \end{pmatrix} \right\| = |\mathbf{c}_1| + |\mathbf{c}_2| < 2\delta \end{split}$$

### Solution

We will show that  $\vec{0}$  is stable. Let  $\varepsilon>0$  and set  $\delta=\frac{\varepsilon}{2}$ 

If

$$\left\| \mathbf{c}_1 \begin{pmatrix} \sin(0) \\ \cos(0) \end{pmatrix} + \mathbf{c}_2 \begin{pmatrix} \cos(0) \\ -\sin(0) \end{pmatrix} \right\| \leq \frac{\varepsilon}{2} \Rightarrow \left\| \begin{pmatrix} 0 \\ \mathbf{c}_1 \end{pmatrix} + \begin{pmatrix} \mathbf{c}_2 \\ 0 \end{pmatrix} \right\| < \frac{\varepsilon}{2} \Rightarrow \sqrt{\mathbf{c}_1^2 + \mathbf{c}_2^2} < \frac{\varepsilon}{2} \Rightarrow |\mathbf{c}_1| < \frac{\varepsilon}{2}, |\mathbf{c}_2| < \frac{\varepsilon}{2}$$

Therefore,

$$\left\|\mathbb{c}_1\left(\frac{\sin(2t)}{\cos(2t)}\right) + \mathbb{c}_2\left(\frac{\cos(2t)}{-\sin(2t)}\right)\right\| \leq |\mathbb{c}_1| \left\|\left(\frac{\sin(2t)}{\cos(2t)}\right)\right\| + |\mathbb{c}_2| \left\|\left(\frac{\cos(2t)}{-\sin(2t)}\right)\right\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Thus,  $\vec{0}$  is stable.

## Asymptotically stable

A solution  $\overrightarrow{\varphi_0}(t)$  is asymptotically stable if it is stable and every  $\vec{\varphi}$  close to  $\overrightarrow{\varphi_0}$  converges to  $\overrightarrow{\varphi_0}$ :

$$\exists \delta > 0 \| \vec{\varphi}(0) - (\varphi_0)(0) \| < \delta \Rightarrow \vec{\varphi}(t) \to \overrightarrow{\varphi_0}(t) \text{ as } t \text{ gets as large as possible } \vec{\varphi}(t) = 0$$

### **Vibe-based Stability Examples**

If you have the system  $\vec{x}' = A\vec{x}$ , what is the stability of  $\vec{0}$ ?

Examples of  $\vec{x}(t)$ :

$$\begin{array}{c} \mathbb{c}_1 e^{2t} \vec{v}_1 + \mathbb{c}_2 e^{3t} \vec{v}_2 \rightarrow \text{unstable} \\ \mathbb{c}_1 e^{2t} \vec{v}_1 + \mathbb{c}_2 e^{-3t} \vec{v}_2 \rightarrow \text{unstable} \\ \mathbb{c}_1 e^{-2t} \vec{v}_1 + \mathbb{c}_2 e^{-3t} \vec{v}_2 \rightarrow \text{asymptotically stable} \\ \mathbb{c}_1 \vec{v}_1 + \mathbb{c}_2 e^{-3t} \vec{v}_2 \rightarrow \text{asymptotically stable} \\ \mathbb{c}_1 \vec{v}_1 + \mathbb{c}_2 (2t+5) \vec{v}_2 \rightarrow \text{unstable} \\ \mathbb{c}_1 e^{2t} \cos(t) \vec{v}_1 + \mathbb{c}_2 e^{2t} \sin(t) \vec{v}_2 \rightarrow \text{unstable} \\ \mathbb{c}_1 e^{-t} \vec{v}_1 + \mathbb{c}_2 e^{-t} (2t+3) \vec{v}_3 \rightarrow \text{asymptotically stable} \\ \mathbb{c}_1 e^{-2t} \cos(3t) \vec{v}_1 + \mathbb{c}_2 e^{-2t} \sin(3t) \rightarrow \text{asymptotically stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \sin(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \cos(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \cos(3t) \vec{v}_2 \rightarrow \text{stable} \\ \mathbb{c}_1 \cos(3t) \vec{v}_2 \rightarrow \mathbb{c}_1 \cos(3t) \vec{v}_2 \rightarrow \mathbb{c}_2 \cos(3t) \vec{v}_2 \rightarrow \mathbb{c}_2 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \cos(3t) \vec{v}_2 \rightarrow \mathbb{c}_2 \cos(3t) \vec{v}_2 \rightarrow \mathbb{c}_2 \cos(3t) \vec{v}_2 \rightarrow \mathbb{c}_2 \cos(3t) \vec{v}_1 + \mathbb{c}_2 \cos(3t) \vec{v}_2 \rightarrow \mathbb{c}_2 \cos(3t) \vec{v}_2 \rightarrow \mathbb{c}_2 \cos(3t) \vec{v}_2 \rightarrow \mathbb{c}_2 \cos(3t) \vec{v}_2 \rightarrow \mathbb{c}_2 \cos($$

If you have repeated roots of 0 with linearly independent eigenvectors:

$$\vec{x}(t) = \mathbb{c}_1 \vec{v}_1 + \mathbb{c}_2 \vec{v}_2 \to \text{stable}$$

There are different types of stability.  $\mathbb{c}_1\cos(3t)\vec{v}_1+\mathbb{c}_2\sin(3t)\vec{v}_2$  is stable by being bounded, but it does not reach zero. The other example is for example,  $\mathbb{c}_1e^{-2t}\cos(3t)\vec{v}_1+\mathbb{c}_2e^{-2t}\sin(3t)$  where it goes to zero. This is called asymptotically stable.

# Stability of the solutions to $rac{\mathrm{d} ec{x}}{\mathrm{d} t} = A ec{x}$

Consider the system  $\frac{d\vec{x}}{dt} = A\vec{x}$ .

- ullet All solutions are asymptotically stable if all eigenvalues of A have negative real parts.
- All solutions are unstable if at least one eigenvalue of A has a positive real part.
- Suppose all eigenvalues of A have nonpositive real parts. Let  $\lambda_1,...,\lambda_k$ , with  $k\geq 1$ , be all distinct eigenvalues of A whose real parts are zero. Call the multiplicity of  $\lambda_j$  as a root of the characteristic polynomial of A  $m_j$ .
  - If A has  $m_j$  linearly independent eigenvectors corresponding to  $\lambda_j$  for every j, then every solution to the system is stable but not asymptotically stable.
  - Otherwise, every solution is unstable.

#### **Example**

Take the following eigenvectors:

$$0, 0, i, i, -i, -i, -3, -4, -4, -4$$

For stability, you need  $\vec{v}_1, \vec{v}_2$  as linearly independent eigenvectors of 0, and  $\overrightarrow{w_1}, \overrightarrow{w_2}$  linearly independent eigenvectors of i and  $\overline{\overrightarrow{w_1}}, \overline{\overrightarrow{w_2}}$  linearly independent for -i.

## Theorem on Stability in nonlinear systems near stationary solutions

Suppose  $\vec{x}_0$  is a stationary solution to the system  $\vec{x}' = f(x)$ . Let A be the Jacobian matrix at  $x_0$ .

• If all eigenvalues of A have negative real parts, then  $\vec{x}_0$  is an asymptotically stable solution to the system.

- If at least one eigenvalue of A has a positive real part, then  $\vec{x}_0$  is an unstable solution to the system.
- If neither is true, then  $\vec{x}_9$  could be stable, unstable or asymptotically stable.

### Getting the vibe of the answer

Approximate the system with a linear system and use the stability of the linear system to understand the stability of solutions to a nonlinear system.

Pick  $(x_0, y_0)$ .

$$\begin{cases} x' = f(x,y) \approx f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) \\ y' = g(x,y) \approx g(x_0,y_0) + g_x(x_0,y_0)(x-x_0) + g_y(x_0,y_0)(y-y_0) \end{cases}$$

If  $(x_0,y_0)$  is a stationary solution, then  $f(x_0,y_0)=g(x_0,y_0)=0$ 

This results in:

$$\begin{cases} x' = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) \\ y' = g_x(x_0, y_0)(x - x_0) + g_y(x_0, y_0)(y - y_0) \end{cases}$$

Let  $\tilde{x}=x-x_0$ ,  $\tilde{y}=y-y_0$ .

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \underbrace{\begin{pmatrix} f_x(x_0, y_0) & f_y(x_0, y_0) \\ g_x(x_0, y_0) & g_y(x_0, y_0) \end{pmatrix}}_{A} \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix}$$

This is the linearization near the stationary solution  $(x_0, y_0)$ .

If you take that approximation resulting in eigenvalues of  $\{-2, -3\}$ , it is asymptotically stable around the stationary solution.

If you have that approximation resulting in eigenvalues of  $\{2, -3\}$ , it is unstable around the stationary solution.

If you have zeros, it's unclear.

#### **Example**

$$\begin{cases} x' = 1 - xy \\ y' = x - y^3 \end{cases}$$

### Solution

Stationary solutions satisfy

$$\begin{cases} 1 - xy = 0 \\ x - y^3 = 0 \end{cases} \to \begin{cases} 1 - xy = 0 \\ x = y^3 \end{cases} \to \begin{cases} 1 = y^4 \\ x = y^3 \end{cases} \to \begin{cases} x = \pm 1 \\ y = \pm 1 \end{cases}$$

The Jacobian matrix is:

$$\begin{pmatrix} -y & -x \\ 1 & -3y^2 \end{pmatrix}$$

Evaluate at (1,1):

$$\begin{pmatrix} -1 & 1 \\ 1 & -3 \end{pmatrix} \to z^2 + 4z + 4 = (z+2)^2 \Rightarrow \lambda = (-2, -2)$$

By a theorem,  $\binom{1}{1}$  is an asymptotically stable solution.

Evaluate at (-1, -1):

$$\begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix} \Rightarrow z^2 + 2z - 4 \rightarrow (z+1)^2 - 5 \rightarrow \lambda = -1 \pm \sqrt{5}$$

Since  $\sqrt{5}-1>0$ , (-1,-1) is an unstable solution.

### **Example**

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \sin(x+y) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = e^x - 1 \end{cases}$$

#### Solution

Find stationary solutions:

$$\begin{cases} \sin(x+y) = 0 \\ e^x - 1 = 0 \end{cases} \Rightarrow \begin{cases} \sin(x+y) = 0 \\ e^x = 1 \end{cases} \Rightarrow \begin{cases} x = 0 \\ \sin(y) = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = k\pi, k \in \mathbb{Z} \end{cases}$$

Jacobian:

$$\begin{pmatrix} \cos(x+y) & \cos(x+y) \\ e^x & 0 \end{pmatrix}$$

Plug in stationary solutions:

$$\begin{pmatrix} \cos(k\pi) & \cos(k\pi) \\ 1 & 0 \end{pmatrix} \Rightarrow p(z) = z^2 - \cos(k\pi)z - \cos(k\pi) = 0$$
 
$$\frac{\cos(k\pi) \pm \sqrt{\cos^2(k\pi) + 4\cos(k\pi)}}{2} \Rightarrow \begin{cases} \frac{1 \pm \sqrt{5}}{2} & \text{if k is even} \\ \frac{-1 \pm \sqrt{3}i}{2} & \text{if k is odd} \end{cases}$$

If k is even, then  $\operatorname{Re}\!\left(\frac{1+\sqrt{5}}{2}\right)>0$  and thus  $(0,k\pi)$  is unstable.

If k is odd, then  $\mathrm{Re}\Big(\frac{-1\pm\sqrt{3}i}{2}\Big)=-\frac{1}{2}<0$  and thus  $(0,k\pi)$  is asymptotically stable.

### **Review**

### **Example of an inverse Laplace**

Find the inverse Laplace of  $\ln\left(\frac{s^2}{s^2+1}\right)$ 

#### **Scratch**

$$= 2\ln(s) - \ln(s^2 + 1)$$

$$\mathcal{L}^{-1} \Biggl\{ \ln \Biggl( \frac{s^2}{s^2 + 1} \Biggr) \Biggr\}(t) = \mathcal{L}^{-1} \bigl\{ \ln \bigl( s^2 \bigr) - \ln \bigl( s^2 + 1 \bigr) \bigr\}(t) \\ \Rightarrow -\frac{1}{t} \mathcal{L}^{-1} \biggl\{ \frac{2}{s} - \frac{2s}{s^2 + 1} \biggr\} \\ \Rightarrow -\frac{1}{t} (2 - 2\cos(t)) = \frac{2\cos(2t) - 2\cos(t)}{t} = \frac{2\cos(2t) - 2\cos(2t)}{t} = \frac{2\cos(2t) - 2\cos(2$$

#### **Actual solution**

We claim the following is piecewise continuous and of exponential order:

$$j(t) = \frac{2\cos(t) - 2}{t}$$

It is piecewise continuous because the only discontinuity is at t = 0.

$$\lim_{t\to 0} \frac{2\cos(t)-2}{t} = \lim_{t\to 0} \frac{-2\sin(t)}{1} = 0$$
 
$$\left|\frac{2\cos(t)-2}{t}\right| \le M \forall t \in (0,1], \text{by EVT since } f(t) = \begin{cases} \frac{2-2\sin(t)}{t} \text{ if } t \neq 0\\ 0 \text{ if } t = 0 \end{cases}$$

If t > 1 then

$$\left|\frac{2\cos(t)-2}{t}\right| \leq \frac{4}{1} \forall t \in (0,\infty), \left|\frac{2\cos(t)-2}{t}\right| \leq M+4 \leq (M+4)e^{0t}$$

By the table:

$$\begin{split} \mathcal{L}\bigg\{t\frac{2\cos(t)-2}{t}\bigg\}(s) &= -\frac{\mathrm{d}}{\mathrm{d}s}\bigg(\mathcal{L}\bigg\{\frac{2\cos(t)-2}{t}\bigg\}(s)\bigg) = \frac{2}{s} - \frac{2s}{s^2+1}\\ & \div \int -\frac{\mathrm{d}}{\mathrm{d}s}\bigg(\mathcal{L}\bigg\{\frac{2\cos(t)-2}{t}\bigg\}(s)\bigg)\mathrm{d}s = \int \frac{2}{s} - \frac{2s}{s^2+1}\mathrm{d}s\\ & \mathcal{L}\bigg\{\frac{2\cos(t)-2}{t}\bigg\}(s) = 2\ln(s) - \ln(s^2+1) + \mathbb{c}_1\\ & \mathrm{At}\ s \to \infty: 0 \div \mathbb{c}_1 = 0\\ & \mathcal{L}\bigg\{\frac{2\cos(t)-2}{t}\bigg\}(s) = \ln(s^2) - \ln(s^2+1)\\ & \mathcal{L}\bigg\{\frac{2\cos(t)-2}{t}\bigg\}(s) = \ln\bigg(\frac{s^2}{s^2+1}\bigg) \end{split}$$

#### Example 8.6

Suppose two different linear homogeneous differential equations with constant coefficients  $L_1[y]=0$  and  $L_2[y]=0$  have a common nonzero solution y=y(t), defined over R. Prove that the characteristic polynomials  $p_1(z)$  and  $p_2(z)$  of  $L_1$  and  $L_2$  have at least one common root.

Suppose the list of all distinct roots to  $p_1(z)$  is:

$$z_1, z_2, ..., z_m$$

And the list of all distinct roots to  $p_2(z)$  is:

$$w_1, w_2, ..., w_l$$

Assume, on the contrary,  $z_{i'}s$  and  $w_{i'}s$  are distinct:

$$\begin{split} y &= \sum_{k=1}^s \sum_{j=1}^m \mathbb{c}_{jk} t^k e^{z_j t} \text{ for some } \mathbb{c}_{jk} \in \mathbb{C} \\ &= \sum_{k=1}^r \sum_{j=1}^l \mathbb{d}_{jk} t^k e^{w_j t} \text{ for some } \mathbb{d}_{jk} \in \mathbb{C} \end{split}$$

$$\sum_{k=1}^s \sum_{j=1}^m \mathbb{c}_{jk} t^k e^{z_j t} - \sum_{k=1}^r \sum_{j=1}^l \mathbb{d}_{jk} t^k e^{w_j t} = 0$$

Since  $z_1,...,z_m,w_1,...,w_l$  are distinct,  $\mathbf{c}_{jk}=\mathbf{d}_{jk}=0 \forall j,k\Rightarrow y=0$ 

# **Chapter 14: Orbits and PHase Plane Portraits**

### **Orbits**

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \vec{f}(\vec{x}); \vec{x}: (a,b) \to \mathbb{R}^n$$

When drawing a graph of an orbit in the xy-plane, arrows indicate the direction in which t increases.

$$\begin{cases} x' = f(x, y) \\ y' = g(x, y) \end{cases}$$

forms the orbit equation f(x,y)dy - g(x,y)dx = 0.

### **Define**

Given a system  $\frac{\mathrm{d}x}{\mathrm{d}t} = f(x,y), \frac{\mathrm{d}y}{\mathrm{d}t} = g(x,y)$ :

An orbit is the curve (x(t), y(t)) on the xy-plane, where (x(t), y(t)) is a solution to the system.

Phase plane portraits are formed by drawing sample orbits in the xy-plane that show the behavior of all solutions.

Once again, arrows indicate the direction in which each orbit is traversed t gets as large as possible.

## **Existence and Uniqueness Theorem for Autonomous Systems**

$$\begin{cases} \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \vec{f}(\vec{x}) \\ \vec{x}(t_0) = \vec{x}_0 \end{cases}$$

Assume  $\vec{f}$  is  $C^1$  over an open subset U of  $\mathbb{R}^n$  containing  $\vec{x}_0$ .

Then, a unique solution is defined over some interval,  $(t_0-\varepsilon,t_0+\varepsilon)$ .

Unrelated to that theorem, but if  $\vec{x}(t)$  is a solution to  $\frac{d\vec{x}}{dt} = \vec{f}(\vec{x})$ , then so is  $\vec{x}(t+c)$  for a constant  $c \in \mathbb{R}$ , as long as both t an t+c are in the domain of  $\vec{x}$ .

### **Proof**

Let 
$$\vec{y}(t) = \vec{x}(t+c)$$
.

$$\vec{y}'(t) = \vec{x}'(t+c) = \vec{f}(\vec{x}(t+c)) = \vec{f}(\vec{y}(t))$$

## **Theorem on Properties of Orbits**

Suppose all components of the vector field  $\vec{f}(x)$  have continuous first partials, then:

- 1. Two distinct orbits do not intersect.
- 2. If  $\vec{\varphi}(t)$  is a solution to  $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \vec{f}(\vec{x})$  with  $\vec{f} \in C^1$ , and  $\vec{\varphi}(t_0) = \vec{\varphi}(t_0 + T)$  for some  $t_0$ , T, with  $T \neq 0$ , them  $\vec{\varphi}$  is periodic with period T.
- 3. The corresponding solution is periodic if an orbit lies on a closed curve containing no stationary solution.

### **Proof**

Suppose  $\vec{x}$  and  $\vec{y}$  are both solutions to  $\frac{\mathrm{d}\vec{z}}{\mathrm{d}t}=\vec{f}(\vec{z})$  and  $\vec{x}(t_0)=\vec{y}(t_1).$  Consider the IVP:

$$\begin{cases} \frac{\mathrm{d}\vec{z}}{\mathrm{d}t} = \vec{f}(\vec{z}) \\ \vec{z}(t_0) = \vec{x}(t_0) \end{cases}$$

 $\vec{x}(t)$  satisfies this IVP by the choice of  $\vec{x}$ .  $\vec{z}(t) = \vec{y}(t+t_1-t_0)$  satisfies the differential equation. Further,

$$z(t_0) = \vec{y}(t_0 + t_1 - t_0) = \vec{y}(t_1) = \vec{x}(t_0)$$

.

 $\vec{z}$  is another solution to the IVP.  $\vec{z}=\vec{x}\Rightarrow \vec{y}(t+t_1-t_0)=\vec{x}(t)$ , as long as t is in the domain of  $\vec{x}$ , and  $t+t_1-t_0$  is in the domain of  $\vec{y}$ .

These two solutions may be offset by some time but represent the same order.

### **Arc Length**

$$\begin{cases} x' = f(x,y) \\ y' = g(x,y) \end{cases}$$
$$\int_0^s \sqrt{\left(x'(t)\right)^2 + \left(y'(t)\right)^2} dt = \int_0^s \sqrt{f^2 + g^2} dt$$

 $f^2+g^2\neq 0$  since there is no stationary solution. Therefore,

$$\lim_{s \to \infty} \int_0^s \sqrt{f^2 + g^2} \mathrm{d}t = \infty$$

### **Example**

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = ye^{1+x^2+y^2} \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -xe^{1+x^2+y^2} \end{cases}$$

#### Solution

The orbit equation:

$$ye^{1+x^2+y^2}dy + xe^{1+x^2+y^2}dx = 0$$

$$\Rightarrow ydy + xdx = 0 \Rightarrow \frac{d}{dt(\frac{1}{2}(x^2+y^2))} = 0 \Rightarrow x^2 + y^2 = c$$

### **Stationary Solutions**

(0,0) is the only stationary solution. This is the solution represented by C=0.

If C>0, the orbit lies on the closed curve  $x^2+y^2=C$ , which contains no stationary solutions, so the solution is periodic.

If C=0, then  $x^2+y^2=0 \Rightarrow x=y=0$ , which is also periodic.

 ${\cal C} < 0$  yields no curve in the reals.

### **Example**

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = xy\\ \frac{\mathrm{d}y}{\mathrm{d}t} = e^x + y^2 \end{cases}$$

#### Solution

We will show the y-axis is the union of orbits. Since orbits do not intersect if a solution starts with x > 0, it can never get to x = 0 or  $x \le 0$ .

Set x = 0:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = e^0 + y^2 = 1 + y^2 \Rightarrow \arctan(y) = t + \varepsilon \Rightarrow y = \tan(t + \varepsilon).$$

Take a solution to the above:

$$(0, \tan(t))$$

This is one orbit that covers the entire y-axis ( $-\frac{\pi}{2} < t < \frac{\pi}{2}$ ).

### **Example**

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -2x - 4x^3 \end{cases}$$

### **Solutions**

**Stationary Solutions:** 

$$\begin{cases} y = 0 & \text{over } \mathbb{R} \\ -2x - 4x^3 = 0 \end{cases} \stackrel{\text{over } \mathbb{R}}{\Rightarrow} \begin{cases} x = 0 \\ y = 0 \end{cases}$$

Orbit equation, which is exact:

$$y\mathrm{d}y + (2x + 4x^3)\mathrm{d}x = 0$$

Therefore

$$\frac{y^2}{2} + x^2 + x^4 = \mathbb{C}$$

Now, to show periodicity, check that it is a closed curve, for  $\varepsilon \geq 0$ 

$$\frac{y^2}{2} + x^2 + x^4 = \mathbb{C}$$

$$\Rightarrow y = \pm \sqrt{2\mathbb{C} - 2x^2 - 2x^4}$$

$$2\mathbb{C} - 2x^2 - 2x^4 \ge 0$$

$$x^2 + x^4 - \mathbb{C} \le 0$$

$$x^4 + x^2 - \mathbb{C} = (x^2 - r)(x^2 - s)$$
Assume  $\mathbb{C} > 0$ :
$$rs = -\mathbb{C} < 0$$
Thus  $r < 0 < s \Rightarrow x^2 - r > 0$ 

$$(x^2 - r)(x^2 - s) \le 0 \Rightarrow -\sqrt{s} \le x \le \sqrt{s}$$

Thus, if c > 0, the orbit lies on a closed curve.

The stationary solution is (0,0). If (0,0) is on the curve, then  $\varepsilon = 0$ . Thus, for every  $\varepsilon > 0$ , the solution is periodic.

If c = 0, then x = y = 0, which is a fixed point, and therefore the solution is periodic.

## **Phase plane Portraits**

Sample orbits of various kinds, along with arrows indicating the behaviors of the solution as t increases.

### **Example**

$$\vec{x}(t) = \mathbf{c}_1 e^{-3t} \binom{-1}{1} + \mathbf{c}_2 e^{3t} \binom{2}{1}$$

$$A\vec{x} = \vec{0} \Rightarrow \vec{x} = \vec{0}$$

### Solution

$$\begin{split} \vec{x}(t) &= \mathbb{c}_1 e^{-3t} \binom{-1}{1} \Rightarrow y = -x, x < 0, \mathbb{c}_1 > 0 \\ \vec{x}(t) &= \mathbb{c}_1 e^{-3t} \binom{-1}{1} \Rightarrow y = -x, x > 0, \mathbb{c}_1 < 0 \\ \vec{x}(t) &= \mathbb{c}_2 e^{3t} \binom{2}{1} : y = \frac{1}{2} x \\ \mathbb{c}_1 e^{-3t} \binom{-1}{1} + \mathbb{c}_2 e^{3t} \binom{2}{1} \overset{t \to \infty}{\approx} \mathbb{c}_2 e^{3t} \binom{2}{1} \\ \mathbb{c}_1 e^{-3t} \binom{-1}{1} + \mathbb{c}_2 e^{3t} \binom{2}{1} \overset{t \to -\infty}{\approx} \mathbb{c}_2 e^{-3t} \binom{-1}{1} \end{split}$$



This solution is called a saddle.

### **Example**

$$\vec{x}(t) = \mathbf{c}_1 e^t \binom{-1}{1} + \mathbf{c}_2 e^{2t} \binom{-2}{3}$$

## Solution

$$\begin{split} &\mathbb{c}_1 e^t \binom{-1}{1} : y = -x \\ &\mathbb{c}_2 e^{2t} \binom{-2}{3} : y = -\frac{3}{2} x \\ &\mathbb{c}_1 e^t \binom{-1}{1} + \mathbb{c}_2 e^{2t} \binom{-2}{3} \overset{t \to \infty}{\approx} \mathbb{c}_2 e^{2t} \binom{-2}{3} \\ &\mathbb{c}_1 e^t \binom{-1}{1} + \mathbb{c}_2 e^{2t} \binom{-2}{3} \overset{t \to -\infty}{\approx} \mathbb{c}_1 e^t \binom{-1}{1} \end{split}$$



This solution is a nodal source.

## Example

$$\begin{split} \vec{x}(t) &= \mathbb{c}_1 e^{-t} \binom{-3}{1} + \mathbb{c}_2 e^{-2t} \binom{-2}{1} \\ &\mathbb{c}_1 e^{-t} \binom{-3}{1} \Rightarrow y = -\frac{1}{3} x \\ &\mathbb{c}_2 e^{-2t} \binom{-2}{1} \Rightarrow y = -\frac{1}{2} x \end{split}$$



This solution is called a nodal sink.

$$\begin{split} & \mathbb{c}_1 e^{-t} \binom{-3}{1} + \mathbb{c}_2 e^{-2t} \binom{-2}{1} \overset{t \to \infty}{\approx} \mathbb{c}_1 e^{-t} \binom{-3}{1} \approx 0 \\ & \mathbb{c}_1 e^{-t} \binom{-3}{1} + \mathbb{c}_2 e^{-2t} \binom{-2}{1} \overset{t \to -\infty}{\approx} \mathbb{c}_2 e^{-2t} \binom{-2}{1} \end{split}$$

### **Example**

$$\vec{x}(t) = e^{(1+i)t} \binom{-i}{1} = e^t (\cos(t) + i\sin(t)) \binom{-i}{1} = e^t \binom{(-\cos(t)i + \sin(t))}{(\cos(t) + i\sin(t))}$$

### **Solution**

$$\vec{x}(t) = \mathbf{c}_1 e^t \begin{pmatrix} -\cos(t) \\ \sin(t) \end{pmatrix} + \mathbf{c}_2 e^t \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}$$

There is a unique stationary solution at the origin.

This solution is a spiral, so it must be one of these:



It is a source since  $e^t \to \infty$  as  $t \to \infty$ . Since  $\frac{\mathrm{d}y}{\mathrm{d}t}\big|_{(1,0)} = -1$ , and -1 < 0, it is clockwise.



$$\vec{x}(t) = \mathbb{c}_1 e^{2i} \binom{-i}{2} + \mathbb{c}_1 e^{-2i} \binom{i}{2} = \cdots = \mathbb{c}_1 \binom{\sin(2t)}{2\cos(2t)} + \mathbb{c}_2 \binom{-\cos(2t)}{2\sin(2t)}$$

Solution 
$$\frac{\mathrm{d}y}{\mathrm{d}x}=-4x\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{(1,0)}=-4<0\Rightarrow \mathrm{clockwise}$$

It is a bunch of ellipses.



$$\vec{x}' = \vec{0}$$

# Solution

The zero solution (just a bunch of infinitely small dots):



$$\vec{x}(t) = \mathbf{c}_1 \binom{1}{0} + \mathbf{c}_2 e^{-t} \binom{0}{1}$$

## Solution

There are stationary solutions for all x when y=0. Then, there are vertical orbits along the y-axis.



### **Poincare-Bendixon Theorem**

Let R be a closed and bounded region of the xy-plane. Suppose f(x,y) and g(x,y) have continuous first partials over an open region containing R. Assume a solution x(t),y(t) to a system of equations:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x, y), \frac{\mathrm{d}y}{\mathrm{d}t} = g(x, y)$$

remains in R for all future t. Suppose further that R contains no stationary curve. Then, either the orbit (x(t),y(t)) is itself a closed curve, or it spirals into a simple closed curve, which is itself an orbit of a periodic solution. Therefore, any such system has a periodic solution.

If you are within a region and remain in that region, you will eventually have a periodic or stationary solution.

### **Example**

Prove that the equation has a nontrivial periodic solution:

$$z'' + (z^2 + 2z'^2 - 1)z' + z = 0$$

#### Solution:

Form a system:

$$x = z, y = z'$$
 
$$\Rightarrow \begin{cases} x' = y \\ y' = -(x^2 + 2y^2 - 1)y - x \end{cases}$$

Let

$$f(x,y) = y$$
 
$$g(x,y) = -(x^2 + 2y^2 - 1)y - x$$

These are  $C^1$  over  $\mathbb{R}$ .

Find stationary solutions:

$$\begin{cases} 0=x'=y\\ 0=y'=-(x^2+2y^2-1)y-x \end{cases} \Rightarrow \begin{cases} y=0\\ 0=-x \end{cases} \Rightarrow x=y=0$$

So, when forming a region, we must avoid (0,0).

Let's assume a disk.

$$\frac{\mathrm{d}}{\mathrm{d}t}(x^2+y^2) = 2xx' + 2yy' = 2xy + 2y^2(-x^2 - 2y^2 + 1) - 2yx = 2y^2(-x^2 - 2y^2 + 1)$$

If  $x^2+y^2\geq 1$  then  $-x^2-2y^2+1<-y^2\leq 0\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}(x^2+y^2)\leq 0$ . Therefore, if the disk is of radius 1, pieces will stay within the disk.

If  $x^2+y^2\leq \frac{1}{2}\Rightarrow 2x^2+2y^2\leq 1\Rightarrow x^2\leq 1-x^2-2y^2\Rightarrow 0\leq \frac{\mathrm{d}}{\mathrm{d}t}\big(x^2+y^2\big)$ , so if the disk is above  $\frac{1}{2}$ , it cannot enter  $\frac{1}{2}$ 

Therefore take:

$$R = \left\{ (x, y) \in \mathbb{R}^2 \mid \frac{1}{3} \le x^2 + y^2 \le 2 \right\}$$

R is closed and bounded, and if  $(x(0),y(0))\in R$  then  $(x(t),y(t))\in R$  by the previous statements. According to the Poincare-Bendixon theorem, a nontrivial periodic solution exists.

### **Example**

$$\begin{cases} x' = x(1 - 4x^2 - y^2) - \frac{1}{2}y(1+x) \\ y' = y(1 - 4x^2 - y^2) + 2x(1+x) \end{cases}$$

Show that a nontrivial periodic solution exists.

### **Solution**

Let 
$$R = \left\{ (x, y) \in \mathbb{R}^2 \,\middle|\, \frac{1}{2} \le 4x^2 + y^2 \le \frac{3}{2} \right\}$$

R is a closed and bounded region.

$$\frac{\mathrm{d}}{\mathrm{d}t}(4x^2 + y^2) = (8x^2 + 2y^2)(1 - (4x^2 + y^2))$$

If (x,y) satisfies  $1 \le 4x^2 + y^2 \le \frac{3}{2}$  then  $\frac{d}{dt}(4x^2 + y^2) \le 0$ , thus  $4x^2 + y^2$  decreases as a function of t.

If (x,y) satisfies  $\frac{1}{2} \le 4x^2 + y^2 \le 1$  then  $\frac{d}{dt}(4x^2 + y^2) \ge 0$ , thus  $4x^2 + y^2$  increases as a function of t.

Thus if  $(x(0), y(0)) \in R$ , then  $\forall t, (x(t), y(t)) \in R$ 

Also, there is no stationary point in R (proven in class), and they have continuous first partials. By the Poincare-Bendixon theorem, a nontrivial periodic solution exists.

Can we find this solution?

We know that it lays on  $4x^2 + y^2 = 1$ .

$$\begin{cases} x = \frac{1}{2}\cos(f(t)) \\ y = \sin(f(t)) \end{cases} \Rightarrow x' = -\frac{1}{2}\sin(f(t))f'(t) = -\frac{1}{2}\sin(f(t))\left(1 + \frac{1}{2}\cos(f(t))\right) \Rightarrow \left\{f'(t) = 1 + \frac{1}{2}\cos(f(t))\right\}$$

Therefore  $f(t) \to 2\arctan\left(\sqrt{3}\tan\left(\frac{1}{4}\left(\sqrt{3}t+2\sqrt{3}\varepsilon_1\right)\right)\right)$ . Then, solve for the  $\varepsilon_1$  by plugging it in again.

### **Example**

$$\begin{cases} x' = -y + x(1 - x^2 - y^2) \\ y' = x + y(1 - x^2 - y^2) \end{cases}$$

#### Solution

$$\frac{\mathrm{d}}{\mathrm{d}t}(x^2 + y^2) = 2xx' + 2yy' = 2(x^2 + y^2)(1 - x^2 - y^2)$$

There is a single stationary solution at (0,0) (via multiplication by y and x and then subtraction).

Let  $R = \{(x,y) \in \mathbb{R} \mid \frac{1}{2} \le x^2 + y^2 \le \frac{3}{2}\}$ , a closed and bounded set.  $(0,0) \notin R$ . Thus, a nontrivial periodic solution exists.

$$\begin{cases} x = -\cos(t) \\ y = \sin(t) \end{cases} \Rightarrow \text{satisfies the problem}$$

Therefore, it is a solution. Generally, see above and have t instead be f(t)