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Chapter 1: Review and Preliminaries

Complex Numbers

C={a+bi|abeR}
2 =—1

(a+bi)+ (c+di)=(a+c)+ (b+d)i

(a+bi)(c+ di) = (ac — bd) + (ad + be)i
a = The real part of a + bi = Re(a + bi)
b = The imaginary part ofa + bi = Im(a + bi)
a+bi=c+disa=cANb=d

Figure 1

Definition: Linear Dependence

If ¥;, ..., 9,, are linear dependent:

1. One of ¥, ..., 9, is a linear combination of the others.
2. ¢,¥, + - +¢,0, =0 for somec,,...,c,, € F

Field properties of complex numbers

For every z,y,x € C

(Commutativity) x + y = y + x, zy = yx

(Associativity) (x +y) + z =z + (y + 2), (zy)z = x(yz)

(Additive Identity) x + 0 = 2 where 0 = 0 + 03

(Additive Inverse) There is t € C for which z +¢ = 0. When z = a + bi, t = —a + (—b)i
(Multiplicative Inverse) If z # 0, there is some t € C for which zt = 1. t is denoted by =z~
(Distributivity) x(y + z) =Xy + x z

lorl
X

oOgrwWN 4

Properties of complex conjugate and norm
For every z,w € C



lLzw=Zw

2. |zw| = |2| |w]

3. 2|2 =2z

4. (Triangle Inequality) |z+w| <= |z| + |w|

Example
Find the additive and multiplicative inverse of 3 + 2i.

(3+2i)+—3+(—2)i=0

_.(‘_/
3+ 2 3+24)(3—2¢ 3—21 13
T2 _BH2)B-20) g 3% 18
34+2i (34 2i)(3—2i) 13 13

inverse

Theorem
cos(f) + isin(0)

therefore cos(6) + isin(f) = e via

Theorem
1. eiTeiy = eilzty)
2. (De Moivre’s Forumla)(e?®)" = (ei"®)

Example
Evaluate [ e” cos(z)dz.

e® cos(z) = Re(e1+)7)

/e‘” cos(z)dx = Re (/ e(1+i>zdx) (Via/f(x) + g(z)dz = /f(m)dm + /g(x)d:c)
= Re (6:_?): + c)

6(1—i-i)a:
= Re (1—i)+c

2

= Re(%(l —1i)(e”)(cos(x) + isin(x)) + c)
= %em(cos(x) +sin(z)) + ¢

Vector Spaces, Subspaces, Bases

10



F=RorC;u,seV,celF
u+vevV
cveV
If F = R, we say that V is a real vector space. If F = C, we say V is a complex vector space.
Examples of vector spaces

R™ is a real vector space. C" is a complex vector space.

M

mxXn

(R) is a real vector space. (+ is a matrix addition and - is entry wise).
M, (R) =M, (R) is a real vector space.

P.(R) ={ay + a;t + -+ a,t" | agy, ..., a, € R} is a real vector space.
CR)={f:R —R| fis continuous} is a real vector space.
C™(R)={f:R—R: fis C™} is a real vector space.
Subspace Criterion
1. R™ is a subspace of C" as a real vector space (not closed with a complex scalar).
2. CY(R) is a subspace of C(R)

C'R)={f:R—>R| fisC'}

CR)={f:R—R| fis continuous}

Oc(r) = the constant function 0

If f,g € C*(R) then (f + g)' = f’ + ¢’ is continuous. Also, (cf)" = cf’ is continuous Yc € R

Example: Find a basis for C once as a real and once as a complex vector space.
1. C as a real vector space.

We claim {1,4} is a basis for C. Now prove linear independence and spanning.

Linear independence
Assume c¢;1 + ¢y = 0 for some ¢;, ¢y € R.

Then, based on the definition of equals for complex numbers, ¢; =c, =0, 1,4 are linearly
independent.

Spanning
Let x € C. By definition, x = a + bi for some a,b € R = z is a linear combination of 1,4. Thus, 1,14
is a basis for C.

Therefore, {1,} is basis for C, and dimy C = 2 (the dimension of C as real vector space is 2).

2. {1} is a basis for C as a complex vector space.

Linear independence
¢;1 =0= ¢, = 0= {1} is linear independent.

1



Spanning
Let z € C. Then z = 21 = {1} is spanning.

Example: Span
By,....,0, €V

Span{#,, ...,U, } = {Z?Zl ;U | €,.nCpy € ]F} is a subspace of F

Linear Transformation and Matrices
These statements are equivalent:

1 T(d+ cv) =T (u) + cT'(9)

2. T'(at + bv) + aT'(4) + bT' (V)

3. T is linear

Example 1.18
a. T'(u)=Au;Ae M,, ., (F) is fixed, T : F* — F™

b. S: C(R) —» C(R); S(f) (z) = fox f(t)dt is linear
function from R—R

Let f,ge C(R),ceR

S +eq)e) = | “(F 4 cq)(t)dt = / " H(t) + eqlt)dt
0 0

=[50 +c [ gt =55+ es(o)@
0 0

= S(f +cg) = S(f) +¢S(g)
= S is linear O
c. L:CYR)— CR);L(f)(z) = f'(x).
d U:C®[R)—- C*R),U(f)(x)=f"(z)+ 2z +1)f (z) —e* f(x)

Let f,ge C*(R),ceR

U(f +cg)(x) = (f +cg)" (z) + 22+ 1)(f + cg)'(z) — *(f + cg)(z)

f"(@) +eg”(x) + 22+ 1) f(z) + c(2z + 1)g' (z)

—e"f(x)

= (@) + 2z +1)f(z) —e”f(z) + cg”(z) + c(2z + 1)g'(z)

=U(f)(z) + cU(g)(x)
=U(f+cg) =U(f)+cU(g) = U is linear O

To solve y” + (22 + 1)y’ — ey = 0 we need to find Ker U.

Definition of tr, trace

—ce®g

—ce®g

()
(z)

Define tr : M, — F called trace by tr(A) is the sum of it’s diagonal entries. Then tr is linear.

0111 LR aln n
tr : -~ : = E a’jj
anl vee ann 7j=1

12



Flatness Theorem

Yy
y=x+1
y=x
A
0,1)
0 z
Example
T:R?2 - R
T(z,y) =y — x is linear
The line y = z is Ker T = T7*({0}) = {(z,y) € R? | T'(z,y) = 0}
The liney =z + 1is T '({1}) = {(z,y) € R? | T(z,y) = 1}
Theorem

Let T : V — W be a linear transformation between vector spaces, and let @ € W. Then either
the inverse image T ({w}) is empty or T-! =45+ Ker T = {3+ @ | 4 € Ker T'} for every & €
T~ ({w})
Proof
If T-'({w}) = &, we are done!
Assume ¥ € T ({@}).
Let # € T ({w})

—w+0~0eT '({&}) and & € Ker T
=zeT1({w})
Thus, 4+ Ker T C T ({@}) ~ ¥+ Ker T = T ({w})

13



Isomorphism
A linear transformation that is bijective.

Example
T:P, —F" T(ay + ayt + -+ a,t") = (ay, ..., a,,) is an isomorphism.

Because it preserves addition and scalar multiplication, its “basically” the same structure.

Chapter 2: Diagonalization

Coordinate vector
Let B = (b;, . l;) be an ordered basis for a vector space V. The coordinate vector of a vector

s Un

cy C1
v € V relative to B is a column vector ( : ) suchthat v = ¢, 9, + - + ¢, ¥,,. We write [1] . = ( : )

Cn 29

Example
Find [2t 4 1] , where B = (1,1 +¢) is a basis for P.

Solution: We need to write 2t + 1 =¢;1 + ¢5(1 + t) = (¢ + ¢y) + cot.

¢, +cy=1 =—1
1T 6 N Cy
-1
[m+uB:<2)

Coordinate vectors are isomorphisms
B = (b}, s b;) be an ordered basis for a vector space V. Then [] , : V' — F" is an isomorphism.

Proof
Linearity:
Let 9, weV,ceF
Since B is a basis ¥ = chl;j and w = Zdjl;j = U+ c = (cj + C<E|j>l;j
=1 =1 =1
¢, +cdy ol d;
Thus, [0+ cw] = : =i |+c| i | =0, +clw],
c, +cd, Cn d,
One-to-one:

14
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Change of Coordinates Theorem

Let V, W be vector spaces over F with ordered bases A = (a3, ...,a,,) and B = (b}, cey b;) respec-
tively. Let T : V — W be a linear transformation

Then, there is a unique matrix =~ A such that [T'(¢)] , = A[v] , forallv € V.

—~
men (F)

Furthermore, A = ([T(a1)], [T(a3)],; -~ [T(@,)],)

Notation: This matrix is denoted by [T] , ,, [T'(?)] , = [T, ,[U

BAA
Proof
Let v € V. Suppose U = ch ;.
j=1
IOl = [Z c;T(d)) = D glT(d)],
T is linear | j=1 B[] is linear
€1
— (@), [T@)], -~ [T(@,)],) ( s )
CTL
Uniqueness
Suppose A[v] , = B[] Vv € V and A4, B € M,,,,.,,(F)
Replace 9 by a; = A[(fj]A = B[Ej]A = Ae; = Be;
~» The jth column of A = The jth column of B [J
Example

Consider the linear transformation T : F2 — P, given by T'(a,b) = a + b + (a — b)t. Write down the
matrix of T relative to:
a. A= (éy,e,) for F? and B = (1,t) for P,.

15



Solution:

7] = (PO, [TO.D)) = 11+, [1-1],)

b. A=((1,1),(0,1)) for F? and B = (t,1 —t) for P,.

Il
VR
— =
|~
—_
N—

Solution:
Tl = (0.1, 20.0)5) = (Bl 1-tl5) = (3 9)

Conversion Theorem
Suppose U,V,W are vector spaces over F with ordered bases A, B, C, respectively. Let S :

U—VandT:V — W be linear transformations. Then, T' o S is linear. Furthermore, [T o S]CA =
[T] . lS]

CB BA®

Change of Coordinates Matrix
Consider I : V. — V defined by I(Z) — Z. Let A, B be ordered bases for V.
@), =1],,[0] ,VieV

[0, = 54 [,

_—
The change of coordinate matrix from A—B

Inverse of Change of Coordinates Matrix

MNpa =4
Proof
[1]

Suppose A = (a}, .., ay). Then [1], , = (@)l ~ I@)],) = (lai], ~ [a;],) = @ -~ &) =1

by the IVT, 1], , = [I]},

Example

Write (2) in the ordered basis B = ((;), (g)) using a change of coordinates matrix.

Solution:

Let S = (é1,¢€;). We know [(3)] = <§>

S

We need to find [I]BS = [[];; — ([[(1’2)]5 [1(3,5)]5)71 _ (; 3)1

(3,63 G-

16



Example

Find the change of coordinate matrix from the ordered basis A = (1,1 + t) to the ordered basis

B = (1+2t,1—2t)of P,.

Solution: We are looking for [I] , ,
Let S = (1,t)

Ulps =Ulgsllsy = [I];JIB([I]S 1 +t])

= (142t 1—21)" ((1) 1) - (; —12>_1 ((1’ 1) - (

PN N [N
N———

Similarity
We say matrices A, B are similar if A = PBP~! for some invertible matrix P.

Similarity from Change of Coordinates

Suppose A and B are ordered bases of a vector space V and T : V — V is a linear transformation.

Tlpg=UeTellpy=Ulg,[T], U] 5 =g, ,0 7314

[T]BB = [I]BA[T]AA[I];;

Eigenvectors and Diagonalization

Example

Evaluate A1903, A = <,24 i’) U= ( ' )

¥ is an eigenvector, and 5 is its eigenvalue.

Eigenvalues, Eigenvectors and Eigenpairs

Suppose T : V — V is a linear transformation and ¥ € V' is a nonzero vector such that 3\ €
F,T(v) = Ad. We say ) is an eigenvalue, ¥ is an eigenvector, and (), ) is an eigenpair for T'. The
same notion is also defined for square matrices.

Eigenvalues from the characteristic polynomial theorem
A is an eigenvalue for A iff det(A — \I) = 0.

Characteristic Polynomial
The polynomial det(A — zI) is called the characteristic polynomial of A.

17



A—M = : : = polynomial P(\)

Example finding Eigenvalues
Find the eigenvalues of (_11 i) once as an element of M,(R) and once as an element of M, (C).

Over R
1—2 1 2
A—2]) = =(1— 1=
det( 2I) det( ) 1z> (1—2)"+ 0
(1 —z)? = —1, which has no solution over R
Over C
(1—2)%=-1
1—2=41
z=1%41 d

Why diagonal matrices are nice
a 0 z 0 ax 0
b Y = by
0 ¢ 0 =z 0 cz

Diagonalizable Matrix Definition
A square matrix A is said to be diagonalizable if 3 a diagonal matrix D and an invertible matrix
P such that A = PDP~!. In other words, A and D are similar.

So easy @)

diag definition

A 0
diag(Aq, .., A,) =
0 A
Find the Diagonalization of a Matrix

A matrix A € M, is diagonalizable iff there is a basis for F" consisting of eigenvectors of A.

Furthemore, if (A, ?,), ..., (A\,,9,) are eigenpairs of A whose eigenvectors form a basis for F",

e A 0
then A= PDP~! where P = (4, ~ ©,) and D =
0 A

n

Proof

18



(=) Suppose A = PDP~! D = ,P=(v; - 1U,)

= AP = PD = A%, - 3,) = (3, ~ T,)

The jth column: Av; = A\,0; = ()\j, 17']) is an eigenpair. (By the definition of matrix-matrix multiplication)
Since P is invertible, its columns vy, ..., ¥,, form a basis for F".
(<) Suppose (Ay,7;), ..., (A,,,,) are eigenpairs for A and ¥y, ..., 9, form a basis for F”

n)-n

Define T : F* — F", T'(%) = AZ. Let S = (é3,...,¢,)) and B = (¥4, ...,7,,)

ey Upy

[T]SS = ([T(e?)]s [T(e:;)]s) = (first column of A --- nth column of A) = A

Aq 0
[T]BB = ([T<61)]B” [T(ﬁnﬂB) = (P\lﬁl]BB [An{}n]B) =
0 An
Ay 0
A=[T], =[] T[] 5 = (Uy - ¥y) .. (@ ~ 3,)"
0 A

Example
Diagonalize A = (i _13> Use that to find A"Vn € Z*.

Solution

19



det(A — 2T) = (2 D ) — (2= 2)(1—2)— 12 = (2 — 5)(z + 2) = eigenvalues are {5,—2}
— —z
For z2=5:
_ _3 _3 = 1 . .
A—5I = (_4 _4) =7, = (_1> is an eigenvector
For 2=3:
A—>5I = (_44 _33) = Uy = (i) is an eigenvector

<5, ( 1 )), (—2, <Z>) are eigenpairs. ( 1 1) and (Z) are not scalar multiples .. linear independent

dimF? = 2 - ¥, U, form a basis for F?
-1
By a theorem, A = PDP~! = <_11 i) (8 _02) (_11 i)
A= PDpP!
A? = PDP'PDP~! = PDDP ! = PD?P!
A3 = PDP'PDP'PDP' = PDDDP! = PD3P!

A" = PD"P~! = <_11 Z) (5(; (_g)n> ( )
Example

Show A = ((1) f) is not diagonalizable.

LN TN
3w

==

Solution
det(A—2I) = det(1 E z . E z) — (1—2)® - eigenvalues are 1, 1
(8 (2)) (g) - (8) = y = 0. then eigenvectors (g) x#0,z€F

= no basis of F? consisting of eigenvalues

Similar Matrices and Characteristic Polynomial Theorem
Every two similar matrices have the same characteristic polynomial.

Proof
Suppose A, B are similar. By definition, 3P, A = PBP~!.
det(A — zI) = det(PBP~! — 2I) = det(P(B — zI)P™!)
= det(P) det(B — zI) det(P ') = det(P) det(P ') det(B — zI) = det(PP ') det(B — zI)
= det(]) det(B — zI) = det(B — zI)

Distinct Eigenvalues lead to linearly independent Eigenvectors
Eigenvectors corresponding to distinct eigenvalues are linearly independent. Furthermore, if an
n X n matrix has n distinct eigenvalues, then it is diagonalizable.

20



Proof

Suppose (A, 7;), ..., (A, U,,,) @re eigenpairs corresponding to a matrix A (or a linear transforma-
tion T') with A, ..., A, distinct. We will prove v, ..., v, are linearly independent by induction on m.

Base case: m = 1:
Since ¥; # 6, it is linearly independent.

Inductive Hypothesis: Assume 4, ...,v,,_; are linearly independent.

Inductive Step: Prove v, ..., v,, are linearly independent.

Assume ¢, 9, + --- + ¢,,7,, = 0 for some ¢y, ...,c,, € F.

c, AT, 4 - +¢,, AU, T +¢c, AT, = A0=0 (%)
C1A U+ Cp 1 A1 U1 T Cp AUy, = 0 (% *)

(Dl)‘lvl +ot q:Tn,—l)‘rn—lfUWL—l + cm)‘mvm =0

A (%) — (% %) yields 1 (A, — A)y + = + €y (A, — Apy_1 )0y =0

By the IH Cl()\m - )\1) — = ®m71(>\m - AM71) = 0
Sil’lCG )\m # )\1, “eey )\m # )\m_l,d)l —_ = Cm—l - 0 (:>) (Dm - 0 D.
Exponentiating Matrix
Ae M, (F)
We want to define e4.
By the Taylor series:
2, Ak A A2
A _ 2 2.2
eh=) =ittt

>‘1 0 e 0
Thenif A= P P lthened =P Pl
0 >‘n 0 e n

Proof for Diagonalizable Matrices

Suppose D =
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Suppose A = PDP~1

00 _1\k oo ko1 © 7k eM 0
A (PDP 1) B PD*P _ D 1 ) 4
e —ZT—ZT—P Z? Pt =P . P

k=0 : k=0 k=0 0 e
~IfA=P P~lthened =P p!

Example
Evaluate e where A = <f4 _13>
Solution

We previously did this, therefore:
(3 -1\ (-2 0)(3 —-1\"
4= ()0
A (3 —1) e 0 (3 —1)‘1
4 1 0 e5/\4 1
Fundamental Theorem of Algebra

Every polynomial of degree n with complex coefficients can be completely factored into linear
terms.

In other words, if p(t) = a,,t" + - + a;t + aq with a; € C and a,, # 0, then p(t) = a,,(t —¢1)-(t —
¢, ) forsomec; € C.

Upper and Lower Triangular
A square matrix is called upper triangular if every (j, k) entry with j > k is zero.

A square matrix is called lower triangular if every (j, k) entry with j < k is zero.

Chapter 3: Jordan Form

Block Multiplication of Matrices

Ay A\ (B By _ A Byy + AyyByy Ay By + AyBy,

Ay Ay ) \ By By Ay Byy + Ay By Ay Biy + Ay By,
For every two block matrices, as long as all matrix operations are valid. A similar result holds for
all other block matrices.
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Theorem: Schur’s Theorem
Every square matrix in M, ¢, is similar to an upper triangular matrix.

Proof
Induction on n:

Let A e M, (C).

Base case n = 1: A is already upper triangular.

Inductive Hypothesis: Assume the result holds for matrices in M,, ;(C),1<n—1<n
Inductive Step:

Let A; € C be a root of the characteristic polynomial of A. Let ¥, € C™ be an eigenvector corre-
sponding to ;. Let B = (¥, ...,¥,,) be an ordered basis for C". Define T': C* — C",T'(Z) = AZ.
Let S = (e3,...,€,,)

n

[T]4q = A by a theorem

1], = (IT@)], ) = (148, ) = (\] -) = ()(‘)1 *)

A is similar to (21 ) by a theorem
*

A= P(i\; ;) P_17B € Mn—l((c)7V € Mlx(n—l)((c)

By the inductive hypothesis, B = QCQ~! where C is upper triangular

A:P(Al v )Pl
0 QCQR
(10 (AW (1 0,
) )
upper triangular
AW (1 o)_ A WO
0Qc)\oQ?t) o ot
Weneed WQ 1=V <= W=VQ

Plug in and get the upper triangular matrix

Example
Write the following matrix as PTP~!, where T is upper triangular.

00 -1
A=152 3
20 3

Solution
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-z 0 —1
det(A—zI)=det| 5 2—2z 3

2 0 3—-=z
(—1)°"?(2—2)(—28—2)+2) = (2—2)(22 —324+2) = (2—2)(z— 1)(2 — 2)
Find an eigenpair (1,%,;). Extend to a basis to obtain ¥,, U5, then follow the proof O

Recall: Existence of Upper Triangular Matrix
If A€ M, (C), then a = PT P! for some upper triangular matrix 7.

Example:
Give an example of a M, (R) matrix that is not similar to an upper triangular matrix in M,, (R).

Solution
Rotation matrix:

4= (—01 cl))

. . A O . . .
Eigenvalues are +i. If A = P( N )Pl then \;, A, = +i since similar matrices have the same
2
characteristic polynomial, thus the same eigenvalues.

Definition: matrix input into a polynomial
Let A€ M, (F) and P(A) = apl +a;A+ -+ a,, A™ be a polynomial with a; € F.

Cayley-Hamilton theorem matrix
Let p(z) be the characteristic polynomial of a matrix A € M, (F). Then p(A) = 0. To evaluate P(A),
first evaluate det(A — zI), then substitute z = A.

Proof
By Schur’s Theorem, there is an invertible matrix S € M,,(C) and an upper triangular matrix T' €
M, (C) such that A = ST'S™!. By a theorem, the characteristic polynomial of T is also p(z).

Assume p(z) = ag + -+ + a, 2"
P(A)=ayl +a;A+ - +a,A"
=ayl +a,PTS™ '+ +aqa,PT"S™1
= S(p(T))57"
We need to show p(T') = 0.

Base casen = 1.
T = (>\1),P(2) =\ — Z,P(T) =M1 - ()‘1) =0

Inductive Step:
Now, we will prove the theorem for upper triangular matrices by induction on n.
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T=| - - ( 1 ),B = - e M, ,(C)
0 A 0 B 0 A,
Eigenvalues of T are A\, ..., \, = p(z) =det(T — 2zI) = (A\; — 2)--(\,, — 2)
q(z) = det(B — 2I) = (Ay — 2)+(A,, — 2)

0 *
A — A C I
p(2) = (A —2)q(2) P(T) = (M I —T)Q(T) = b '
0 ¢(B)
0 A — A,
0 *
= 1 2 0 O = 9
0 )\1 Y By LH. first column 0 x second and on rows zero
O
Jordan Canonical Form
Objective: Write every matrix
A=P - p1
0 B,,
Al 0
B; = 1
0 A
Each Bj is called a Jordan block.
Example
20 1 0
Consider A = 8 g _21 (2)
00 0 2

a. Find all eigenpairs of A. Show A is not diagonalizable.
All eigenvalues are 2 because this matrix is diagonal, and those are along the diagonal.

Ker (A —2I) = Span {é7, 65}

Eigenpairs = | 2,

o O O =
S O = O

Since dim Ker (A — 2I) = 2 + 4 there is no basis of F* of eigenvectors. - A is not diagonalizable.

b. Find a basis for Ker ((A — 2[)2)
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000 2
000 —2
A—2I)? =
( ) 000 0
000 O
Ker ((A—2I)%) = Span {é},¢, &}

c. Find a basis for Ker ((4 —2I)")Vn € Z*

(A—2I)° =0 = Ker (A—2I)° =F*
~ a basis for Ker ((A —2I)") = {é, &, é3,¢€,}Vn € Z?=3
d. Find A in an “almost diagonal form”.

2000
o210 |,
A=Plogar [P 7

0002

T(vy) = 20,

Start with a vector in Ker (A — 2I)® that is not in Ker (A — 2I)°. Call that 3, : 7, = ¢,. Set Ty =
(A—21)Y, = 2¢;

2 0 0
- 2. _ o] - 0
'v2_ 0 ’/03_ 2 ,'U4— 0
0 0 1

Choose 9; = Set B = (v, 7y, U3, 7,) a basis for F*

O O O
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Consider T : F* — F* by T'(Z) = AZ

[Tlgg = A5 = (1,63, ¢3,€3)

1], = (IT@)), [T@)], [T, 1@,

= ([2771]3 [20,] ; [0y + 203] [0y + 2774]3) =

[\

Tlss = UsplT) palllss =

OO O
|

o O N

oNn OO
o O O
O O OoON
O O N O
o = O
N = OO

P T p-1

Theorem: Steady state kernel space
Let X\ be an eigenvalue of an n x n matrix A. Then, 3k < n such that

Ker(A — M) C Ker (A— AI)? C - C Ker(A — \)* = Ker(A — A" = ...

Generalized Eigenvector
For an eigenvalue \, A € M, (F), every nonzero vector in Ker (A — A\I)" is called a generalized

eigenvector. The vector space Ker (A — A\I)" is called the generalized eigenspace associated to
A

Theorem: linearly independent generalized eigenvectors
Generalized eigenvectors corresponding to distinct eigenvalues are linearly independent.

The dimension of the generalized eigenspace
The dimension of the generalized eigenspace corresponding to an eigenvalue ) is the same as
the multiplicity of A as a root of character polynomials.

Existence of Jordan Canonical Form

Every matrix A € M, (C) has a Jordan Decomposition. Furthermore, this matrix in Jordan form is
unique up to permutations of Jordan blocks.

In other words:

B 0 Al 0

1 .
A=PJP 1, J= ;B = 1
0 B,, 0 \

Example
Find a matrix in Jordan form that is similar to
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2 -1 0
A=1]1-1 5 -1
—4 13 -2

Find P such that A = PJP~! where J is in Jordan form

Solution

det(A—ZI)=—23+522—82+4 (z—1)(—2z+2)(z — 2) - eigenvalues are 1,2,2

{1l

rational root & long division

1
Ker (A —1I) = Span { (1) } 1 =1, we are done
3

1
Ker (A —2I) = Span { ( 0 ) } 1 # 2, we must continue

—1

1 3
Ker (A—2I)2=Span{(0),(1)}, 2 = 2, we are done
-1 0
0 -1 0
A-2I=]-1 3 -1
—4 13 —4

1
vy = (1 , AU, = U, since eigenvector
3

Choose a vector in Ker(A — 21 )2 that is not in the previous one.

3 -1
1_532 1 ,172=<A—2I>173: 0
0 1

{A173 = Uy + 20, from ¥, = (A — 21 )7,

Aty = 24, by eigenvector

B= (17171727173)

gy (7] Ups
[Tlss —1
e 1 —13 100 1 —-13
A=(101)(021)(101)
3 10 002 3 1 0
P J P-1

Motivation for exponentiating
AT, = \o, = (A—A)3, =0
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Example
How many 5 x 5 nonsimilar matrices in Jordan form are there all of those whose eigenvalues are
zero?

Solution

One block: 5 x 5 (1)

Two blocks: 1 x 1A4x4V2x2A3x3(2)

Three blocks: 1 X IANTIX1A3X3VIXIA2X2A2X2(2)
Fourblocks:1 x IN1IX1IALIX1A2x2(1)

Five blocks: 1 x 1IAN1Xx1A1X1ALIX1IAL1Xx1()

So 7 in total.

Example
Find the number of nonsimilar 6 x 6 matrices in Jordan form whose eigenvalues are 1, 2,2, 3, 3, 3.

Solution
For 1, 1 possibility (1 x 1). For 2, 2 possibilities (1 x 1 A1 x 1V 2 x 2. For 3, 3 possibilities (1 x 1 A
IX1IA1IX1IV1IX1IA2x2V3Xx3).

Intotal, 1 x2x3=6
Theorem: Finding J
Let J € M,(C) and J be a matrix in Jordan form that is similar to A. Then, for every k € Z*,

the number of Jordan blocks of J with size at least k x k corresponding to an eigenvalue X is
dim Ker(4 — AI)" — dimKer(A — AI)* . Here (A — A1) = I

Example

O O O N
O O N O
o NN = O
N = OO

dimKer (A —2I) =2
— There are 2 — 0 Jordan blocks of size 1 x 1 or more

dimKer (A—21)°=0

0000
. 2 .. 0001 . .
dimKer (A —2I)” = dim Ker 0000 =3+~ 3—2 =1 block is bigger than 2 x 2
0000

Example
The character polynomial of a matrix A is p(z) = 26(z — 1)*. Suppose dimKer A =1 and
dim Ker (A — I) = 3. Find a matrix in Jordan form that is similar to A.

Solution
For an eigenvalue of ®, we know there is a multiplicity of 6.
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Because dim Ker (A — 0I) — dim Ker (A —0I)° = 1 — 0 = 1. Therefore, there is one Jordan block.
Since the multiplicity is 6, this Jordan block is 6 x 6

For an eigenvalue of 1, we know there is a multiplicity of 4. Because dimKer (A —11)—
dim Ker (A — 1[)0 = 3 — 0 = 3. Therefore, there are 3 Jordan blocks. Since the multiplicity is 4,
they have sizes 2 x 2,1 x 1,and 1 x 1.

0100000000
0010000000
0001000000
0000100000
A= 0000010000
0000000000
0000001000
0000000100
0000000011
0000000001
Nilpotent
For a matrix A € M, (F), 3kA* =0
Applications of Jordan Form
B, 0
A=P - P Ae M, (C)
0 B,
Al 0 N0 01 0
sz 1 = . + 1:)\JI+NJ
0 A 0 )\j 0 0

Njel = 0, ey N€p =€ = NJ]-c =0 ~ N, is nilpotent.
I

A 0 N, 0

A=P P14+P P!
0 AJ 0o N,
Diagonalizable Nilpotent

For every A € M, (C), there are matrices D, N € M, (C) such that.
1. A=D+N

2. D is diagonalizable.

3. N is nilpotent

4. ND=DN

Overall Objective



Show that e# converges VA € M, (C)
A =D+N

Analytic function
A function f : R — R is called analytic if

Theorem: analytic over reals to convergent over the complex
If 32>, a,a™ converges Vo € R, then 3°°° a,,z" = 0 converges Vz € C.

f(z) = Z a,z"Vz € Cif fis analytic
n=0

Theorem: analytic function of a diagonalizable matrix

A, O
If A= S( ) S~1, and f is analytic, then
0 A

n

Proof
A 0
Suppose A =S St
0 X,
o A0 " . A0
A= a,|s| =~ s =X a.s[ - |87
m=0 0 )‘n m=0 0 )\:Ln
k AT 0 k AT 0
Partial sum : P,(A) = Z a,,S S1=9 Z a,,
m=0 0 Am m=0 0 Am
5 G T 0
S S-1
0 Y am A
k m
Zm:() A AT 0 f(Ar)
f(A) = lim P (A) = lim S - S1=g
k—oo k—oo k
0 S A AT 0
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Theorem: analytic function of a diagonalizable matirx.
f(A) converges VA € M, (C)

Proof

A=D+ N
k
P, (z) = Z a,,z™

0

0o p(m)
P.(zy+ h) = Z Do (@) (z)

m=0

—h™ Note that P,Em) = 0Vm > deg P,, -~ finite sum
m!

Since DN = ND,z, = D,h = N to obtain:

0o p(m)
b (D)
P(D+N)=)» —EZN™
(D + N) P
Suppose N! = 0, which is true for some [ because N is nilpotent.
-1 (m)
5 Py (D) v

m=0

Note D is diagonalizable - lim P,(D) = f(D) A lim P{" (D) = f™)(D)
k—o00 k—o0

Example
If f(z) = e”, then

Example
Evaluate e and sin(B) where A = <1 1>,B = (1 ' )

Solution
Jordan Decomposition:

For sin(B):
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det(B—zI)=(1—2)(-1—2)—1-3=22—4=2=+2

_o.(—1 1\/z\ _ (0 _ 1 . . .
z—2.(3 _3)(y = 0>:>x—y:><2,(1>)1sane1genpa1r
_ o (3 1\ (T _ _ _ 1 . . .

z = 2.(3 1)(3/)_( =y = 3x:>< 2,(_3>)1sane1genpa1r
1 1)(2 0)(1 1)1

1 -3/\0 =2/\1 -3

oo (1 1)(sin2 0 1 1)\
Sm(B)_<1 —3)( 0 sin(—2)) (1 —3)

Chapter 4: Ordinary Differential Equations

Definition of Differential Equation
An equation involving derivatives.

Definition of Ordinary Differential Equation
Equations involving only single-variable derivatives (not partial).

Example

d? d .
—xy + y$2—y =124+ 3t —e'*"t : ODE of order 2
dt? dt

92\ 3
((%) z(t,s) +ts —sint = z(t,s) : PDE of order 1
Definition of Partial Differential Equations

Equations involving partial derivatives.

Definition of Order
The highest derivative that appears in the differential equation.

Goals

Can we find a general solution to the differential equation?
Given initial values, is there a solution? If so, how many?
Can we approximate solutions given some initial values?
What are constant solutions?

What are periodic solutions?

What are bounded solutions?

Are all solutions bounded?

Are all solutions periodic?

Are all solutions odd?

Are all solutions even?

. How do solutions change when initial values change?

VXN, WON

—
—
e}
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Definition of Explicit Differential equations
Any differential equation of the form % = f(t) is called an explicit differential equation.

Example

. . dy _ 1
Find a general solution to —% =

t2—¢°

11 1+ 1
22—t tit—1) t t—1

1 1 ¢
= log(t —1) —log(t) + ¢, = 10g(T) +e,¢,€C

y is differential over (0,1) and y(3) = 5 becomes

1
2

L1
log<21 +¢; =5=log(—1) + ¢, =5=c¢, =5—log(—1) =

2

t—1 1—1¢
y=log<T> +5—log(—1) éyzlog(T) +5

Existence and Uniqueness Theorem for explicit differential equations

Suppose f: (a,b) — R is continuous. Then Vi, € (a,b)Vy, € R the initial value problem (IVP)
given below has a unique solution.

d
{%zf@
y(to) = Yo
Proof
Existence:
t
ot) = [ ) dutyy
to
dy
i f(t) by the fundamental theorem of calculus
to
y(to) = f(u)du +yo =y,
to
Uniqueness:
Assume v, z both satisfy the given IVP.
dy dz
T = 1) = T and y(ty) = 2(t)

#%[y—z]=0=>(y—z)(t)=®Since (y—2)(ty) =0,c=0=y =20

Definition of Linear Differential Equations
aq,...,a,, f,y are functions of t. a4, ..., a,, are called coefficients. f is called forcing.
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Y™ (1) + a, Oy D) + -+ ay(t)y () + ay (D)y(t) = F()
is called a linear differential equation in normal form.
Note that L = D™ + a,,()D™ ! + - + ay(t)D + a, (t) is linear. (D = &)
L(y, +y2) = L(y1) + L(yz); L(cy,) = cL(y;)
An initial value problem is an equation by:
L(y) = f(t)
y(to) = o

YD (ty) = Yn_1
where t,y,, ..., y,,_1 are given constants.

Solution to First-Order Linear Differential Equation
To solve: y' + a(t)y = b(t)

1. Find some A(t) such that A’(t) = a(t)
2. %(eA(t)y) = eAWp(t)
3. Then solve

Proof
To solve: y' + a(t)y = b(t)

py' + pa(t)y = pb(t)

p' = pa(t)
oo 'LL = efa‘(t) dt
(n=A4)

Existence and Uniqueness of First Order Linear Differential Equation.
Suppose a4 (t) and f(t) are continuous over (a,b). Let ¢, € (a,b) and y, € R Then the initial value
problem:

d

{— +a,(t)y = f(2)
y(to) = Yo

has a unique solution over (a,b).

Example
Solve y' +y = €.

Solution 1
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(yp)" =y’ + yu' it seems to be in the right form...
ply +y=e)
py’ + py = pet
If u = p’ then we'd have product rule - p = e

explicit

, 1 1
v +y=e =>ely +ely=e* = (yet) =e* = yet=§e2t+®=>y=§et+ce_t|j

Solution 2
Set L(y) =y’ +y. L is linear. By a theorem, L~*({e'}) = y, + Ker L where y, is a solution to y; +

Yy = et.
1, ,
Y = 56 by guessing.

yeKer L=y +y=0=y =—y=(ely) =0 ely=c=y=ce?
1
y:§et+ce_t,c€RD
Separable Equation

. . . . d
A separable differential equation is one of the form 5 = f(t)g(y).

To solve, write as ‘?—y) = f(t) dt and integrate.

o= [ v dt=[f(t)

Example
Solve j—i’ = 2ty? + 3t%y2. Can you find a solution that satisfies y(1) = 0?

Solution
dy dy
e (2t + 3t2)y? = — = (2t + 3t%) dt =
1 1
=244y
Y trte=y t2+t34c¢
Y =02 5 =0

2+t
y(t) = 0 is a solution

Stationary Definition

A solution to a differential equation is called stationary, fixed, equilibrium, or a critical point if it
is a constant.

Example
find all solutions of

dy _
{E =ty? —ty
y(1) =2
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Solution

dy
2 —t(y? —
y—1 t2
log| — | = = +c¢
() -5
=>—y_1—e§+‘E
Yy
-1 2
N AL
Yy
Stationary
¥ —y=0=y=0,1
-1 2
y—:ce%,ceR
)

Change of variables
In general, to solve y’ = f(ay + bt + ¢) for constants a,b,c € R, we set u = ay + bt + c.

v =ay +b=af(u)+b=>u" =af(u)+0b
Which is separable.
Any DE of the form y’ = f(y) is called autonomous.

In general, to solve y’ = f(¥), substitute u =

=f(u) =u't=f(u) —u

S

ut=y=>ut+u=

Some examples:

, _ay+bt a(%)+b
cey+dt c(¥)+d
2
Ly syt (3) +3(H)+1
2 2
Sy + Tyt 3(3)"+7(3)
In general, to solve y' = Tﬁi—m with a,b,c,m,n,k € R, select constants Y =y +r,T =t+ s

where it cancels out the constants and becomes like the above solution. If not possible, substitute
something else.

Example
Solve:
y = evtt —y —t
y+t
Solution

Define a functionu=y+t=u" =y +1
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uw —1=

Stationary: % = 0 has no solutions

f=

u

e —u

u

/iwz/a
eu
u, df = 17dg = eit’g = _eit

u=t+c
—ue " —e “=t+c

—(y+t)e vt —evt=t+c

Example
Solve

Solution

Yy _ ’ L u—1 ry
u==-=ut=y=>uttu=y = ——=>ut=
U

t

W
y+t
Y
y =1 !
g1
u—1 _—1—u
+1 u+1 w41

which is separable

—1—? a . . U+
—— = 0= 1+ = 0 = no stationary solution
u+1 u?
u
u2+1du+ u2+1du:log(t)+a:
1
3 log(u? + 1) + arctan(u) = log(t) + ¢
1 2
—log <Z—/) +1]+ arctan(g—/> = log(t) + ¢
2 t t
Example
; _ y—t+1
Solve ¢y’ = -
Solution
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T=t+aY =y+bfor some a,b € R.
Y—b—T+a+1_>{_b+a+1=0 {b:_l_)d_Y_Y—T
Y-b+T—a—3 —b—a—3=0 a=-2 dT Y +T’

: look above for the answer to this

1 —1)\? —1
§log((i’;_—2> +1) +arctan(i_2> =log(t—2)+¢c

(assume ¢ € C and the complex logarithm)

T=t—2Y=y—1

Exact Equations and Integrating Factor
Suppose ®(t,y) = c solves a differential equation.

®, + @,y = 0 by chain rule

= S(@(y(0) = Blty) =c

Example
Solve e'y + 2t + (2y + €')y’ =0

Solution
Let’s find ®

{f ®,dt = [ety+2tdt R {<I> = ety +t2 + f(y) Let f(y)=i2Ay(t)=t2

® = ely + t2 4 y? - solutions are ely +t2 + 9> =c,c €R
fq)ydy:ny—}-etdy ® = ety +y2 + g(t)

Exact Definition
A differential equation M(t,y) +N(t,y)% =0 is called exact over an open rectangle R =
(a,b) x (¢,d) on the ty-plane if there is a function ®(¢,y) defined on R such that &, = M and

®, = N for all (t,y) € R. Sometimes this is written as M (t,y) dt + N(t,y) dy = 0.

o, =M
o, =N

:>szZ+N]7+Ok>:>curlF’:(Nt—My)E

Theorem for seeing if Exact

Let M(t,y), N(t,y) be C! functions over an open rectangle R = (a,b) x (c,d) on the ty-plane.
Then, there is a function ®(t, y) defined over R such that ®, = M and ®, = N over R iff M, = N,

Proof
= Suppose &, = M AN ®, = N then M, = &, = &, , = N, by Clairaut’s Theorem. Notice M, A N,
are both continuous by being C.

< Suppose M, = N, we will find ® such that
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D, (t,y) = M(t,y)
®,(t,y) = N(ty)

Fix t, inside (a,b)
t

o(t,y) = | M(z,y)dz+g(y)

t
¢>y=/ M, (z,y)dz + g’ (y)
to

= / N, (z,y)dz + ¢ (v)

= N(z,y)|3=t, +9'(y) = N(t,y) — N(to,y) + 9'(y)

®, =0« N(ty,y) = g'(y). Since N is continuous and depends only on y,

9(y) = /N(to, y) dy exists as a function of y

Example
Solve (zy*> +y+€°) + (z2y+z)y’ =0

Is this exact?
d 2 T
d 2
a[m y+x] =2yx+1

Yes it is exact.

2,2

<I>I:xy2+y+e””:><1>=/xy2+y+e‘”dx: +xzy+e* + f(y)

@y:x2y+m:>ac2y+x+f’(y):my2+m:>f’(y):0:>f(y):0W0rkS

$2y2

2

+zy+e®=c

Example
Solve the IVP:

3t2y + 8ty? + (13 + 82y + 12y2)y’ =0
y(2)=1

Solution
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0 0
a—(3t2y + 8ty?) = 3t? + 16ty = a(ti"’ + 8ty + 12y?) - exact
Yy

®, = 32y + 8ty® = & = 3y + 4t%° + g(y)
®, =% 4+ 8ty + 12y = ¢ + 8t%y + ¢’ (y) = t° + 8t>y + 12y = ¢'(y) = 12y° = g(y) = 4y> works
= B3y + 412y + 493 = ¢ are all the solutions
23(1) +4(2)*(1)° +4(1)° = ¢
8+16+4=28=c¢

| By + 4292 + 493 = 28

Example
Solve

2ty + (2t2 —e¥)y’ =0

Solution
0 0
—2ty =2t #+ 4t = —(2t% — &Y
oy 2 # ol e¥)

Exact does not work.

2ty + (2t2 —e¥)y’ =0
2tpy + (2t* — e¥)py’ =0
We need to find p so the differential equation is exact.

(%Qtyu = %(2752 —e)p
2tp + 2typ, = dtp+ (262 — e¥)p,
u =y because we need to kill the e¥
2t(y) + 2ty(1) = 4t(y) + (26> —e¥) - 0
4ty = 4ty

-~ now exact

ely—1)+t’y* =c¢

To find an integrating factor

1. multiply both sides by

2. use the M, = N, to find a PDE in terms of n
3. Try p = p(t) and p = p(y)

Example
Solve 4zy + 3y> + (23 + 3zy?)y’ =0
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Solution

0 0
8—(43:3/ +3y?) =4z + 9y* # 22 + 3y = a—(xz + 3zy?) - not exact
Y T

3%((4@ +3y°)pu) = (%((902 + 3xy?) )

(42 + 9y°)u + (4oy + 3y° ), = (22 + 3y*)u + (2* + 3zy?)
(2z 4 6y*)u + (4zy + 3y®)p,, = (2 + 3zy°) s,
p=x?

v’ +yzt =c

Chapter 5: Existence and Uniqueness Theorems
Usually used when you can’t actually solve a differential equation.

Existence and Uniqueness Theorem for Linear Equations
Let I be an open interval, and let a; (1), ..., a,, f(t) be continuous functions over I. For every

ceey Uy

ty € I and every y, ..., y,,_; € R the following initial value problem has a unique solution:

(Y™ + a, (YD) + -+ ay ()’ +ay ()y = F(1)
y(to) = ¥o
1Y (to) =1

Yy (ty) = Yn s

d
D= 5L =D"+a, D" "+ +a(t)D +a, (1)
L(y) = f(¢).

Example
Find the largest interval I for which the existence and uniqueness theorem guarantees a unique
solution to the IVP for t € I.

ty” + tjli(;)y/ —y= et
y(1) =2
y'(1) =4

Solution
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tan(t) /+1 G
tt—3)” "1V

4

tan(t)it#g—i-kﬂ,kEZ
t(t—3)=1t+1{0,3}

Because 1 € I, 1 = (0, g)

Example
Prove the function y = sin(¢?) cannot be a solution to a second-order homogeneous linear differ-
ential equation whose coefficients are continuous over (—1, 1).

Solution 1
Suppose on the contrary y = sin(¢?) satisfies

y” + ay(t)y’ + aq(t)y = 0 with aq, ay continuous over (—1,1)
y' = 2t cos(t?)
y” = 2cos(t?) — 4t? sin(t?)

2 cos(t?) — 4t? sin(t?) + a,(t)2t cos(t?)y’ + a1 (t)y =0
2cos(t?) — 4t? sin(t?) + a,(t)2t cos(t?) + a1 (¢) sin(t?) = 0
Plug in 0
2-0+040=0

2 # 0 - cannot be a solution

Solution 2
y = sin(t?)
y' = 2t cos(t?)
Y’ +ax(t)y +ay(t)y =0
y(0) =0
y'(0)=0

y(t) = 0 is another solution - by uniqueness y = sin(¢?) cannot be a solution.

Picard Iterates
To show a solution to the IVP below exists:

{% = f(ta y)
y(to) = Yo

We:
1. Create a sequence y,, of functions.
2. Show y,, converges to y.
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3. Show y satisfies the IVP.
Let y, be the first term, a constant.

dy

@ = f(t,y) =>y—/fty

=y=y+ /fsy

_yo /fsyo
U=%+lf@m@ms

%H@=%+/f@%@m5

Yo, Y1, Yo, .. are called Picard Iterates

Proofish
Assume y,, =y
t
yn = yO + f(S) yn—l (8))d8
tO
l
t
Y=o+ / f(s,y(s))ds
to
y = f(t,y(t))
Example

Solve the IVP 3’ = 32, y(0) = 1. Show this solution is not defined over R.

Solution
This is separable. Since y(0) # 0, the solution is not stationary.
d 1 y(0)=1 1 1
/—g:/ldt:>——:t+c1 = y=— =yt) = ——
y y t+c; t—1

The largest possible domain of this solution is (—oo,1) # R

Example
Find two solutions to the IVP
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Solution
y = 0 is one solution by inspection

/ yzdt:/ldt
Jys

=y =3 is a solution
All solutions:

(t—b)ift > b
Va<0<beRy=<0ifa<t<db
(t—a)Pift<a

Thoughts
d
{d—f = f(t,y)
y(to) = o
How do we show the existence of something without finding it?

Examples of knowing the existence but not finding it
¢ Definite integrals are defined as a limit of Riemann sums.

We need to show that the limit exists
¢ Initial value problem of linear differential equations
e Summation converging

Example of Summation converging

P
Prove f(z) = E Sm(;w) is defined for all z € R.
n
n=1
Solution
sin(nx 1

N |
By p-test with p =2,2 > 1, Z —; converges.
n

n=1

oo
By the comparison test, Z

n=1

|sin(nz)]
——5— converges.

n

>\ sin(nz
By the absolute convergence test,z (nz)

n=1

converges.
n2

We know the above theorems by taking the limit of partial sums; let’s try a similar idea with an IVP.
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Example
Compute the Picard Iterates for the IVP

y=9
f(ty)
y(0)=1
to Yo

and show they converge to the solution this given IVP.

Solution
Yo =1

t t t2
y1:1+/ lds:1+ty2:1+/1+sds:1+t+5
0 0

t 82 t2 t3
—1 1 S ds=14t4 =+ —
vs +/O tatods =14+ o+ o

ntk

Claim: y,, = Z i
k!

Proof by induction on n.
Basecasen=0—y, =1V
n tk

Inductive Hypothesis : Suppose y,, = Z —

!
= k!

Inductive Step:

t n Sk n+1tk
=1+ [ 3 Gds=3

k=0 " k=0
[ee) tk
: _ R /
Jm v =2 gy =e

/

/
y’=y—>%=1—>/y§dt=/1dt—>log(y)=t+c—>y=et+‘°—>y=cet—>y=et

et = et, which is what we got via picard iterates.

Integral Comparison Theorems

b b
Vz € [a,b]f(z) < g(z) = / f(z)dz —/ g(z)dx

‘ / f(@)de

< [1f@lds

Mean Value Theorem
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f(b) — f(a)

dc € [a,b]f'(c) = —

First-Order Differential Equations Existence and Uniqueness

Suppose f(t,y) and f,(t,y) are continuous over a rectangle R on the ty-plane given by ¢, <t <
to+a, [y —yo| < b. Let M be V(t,y) € R,|f(t,y)] < M (this must exist by the extreme value the-
orem) and let o = min(a, & ). Then the IVP

d
{d—z = f(t,9)
y(to) = ¥o
has a continuous solution defined over [t, t, + a]. Furthermore, |y(t) — y,| < bforallt € [ty,ty + .
A similar result holds for [t, — a, ty] and [t, — a, Ty, + @]

Proofish of existence
M is the maximum of |f(¢,y)|

oM< oy
dt

~ the max or min y can reachis y = Mt +y, Vy = —Mt+y, fort € R.
Solve for escape: y, +b=Mt+y,Vy, —b=—Mt+y,=b=MtV—-b=—-Mt=

b b
t= v the solution would exist for ¢t € {to, M] N ﬁ

where the maximum slope is guaranteed over

Example
Consider the IVP

d a2
{d—zt’:t-l—e Y
y(0) =0

Show there is a unique solution defined over [0, 3] and that this solution satisfies |y(t)| < 1 for all
te0,3].

Solution
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to = 0,Y,, Suppose a,b > 0,and ¢t € [0,a],y € [—b, b]
‘t +e v

<at+e%=a+1

b
M=a+1,aa=min (a, n 1) ,t+ eV is C°°. Thus, we can apply the theorem.

~ 3 a unique solution y(t) defined over [0, ]

Let a=1,b=1.

: b . 1 , 1 1
a=min| e, —— | min|{ 1, —— | = min| 1,- | = =.
a+1 1+1 2 2

lyl <b =yl <1

1
~ a unique solution is defined over {0, 5] and |y| <1

Proof of Uniqueness
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dy
W — f(t
Suppose z; (t) and z,(t) both satisfy the given IVP: { 1w = fty)

y(to) =0
Recall y(t) = yo/ f(s,y(s))ds
|21(t) — 25(t)] =

vo + / £(5,2,(5))ds — i — / £(5, 7(s))ds

0

/ £(5,21(5)) — f(s, z3(s))ds

< / (s, 21(5)) — £(5, z3(s)|ds

f, exists and f is continuous. By the MVT there is some ¢ between z;(s) and 2,(s) such that

f(s,21(s)) = f(s,22(s)) = fy(5,¢)(21(5) — 22(s))
= |z1(t) — 2 (t)] < / £y (s:0)[[(21(s) = 25(s))|ds

Since f,, is continuous over R, by the EVT, there is a constant L such that |f,(s,c) | < L,for all s,c

= |21(t) — 2 ()] < L/ |(21(s) = 2(s))[ds

W/ (t) tO

W (t)
= W' (t)—LW(t) <0
= e LW/ (t) — Le B'W(t) <0
d

= (e HW () <0

~ e~ I'W(t) is decreasing over [t,,t, + a.

to
= e LW (t) < e LhoW(t,) = e Lo / |21(8) — 25(s)|[ds =0
¢

0

=>W(t)§0=>/ 12,(5) — 2(s)] ds < 0
l21(5) — 25(5)] zo:/ 21(5) — 25(5)|ds > 0

differentiation

:/z1<s>—z2<s>|=o I (8) = 2y()] = 0 = 2 = 2,
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Example
Show the following IVP has a unique solution defined over [0, co):

{% =e v + 2
y(0) =1

Solution
To show infinity, show that it can go to any arbitrary number h.

Let a,b>0,0<t<a,|ly—1<b
eV +12is O™ - C*
eV + 12| =e V' +2<14t2<1+a>=M

b
a =min| a, ——
(%)

Let b =a(1 + a?) = o = min(a,a) = a
By the existence and uniqueness theorem there is a solution over [0, a] for all a
Let y,, be the unique solution to the given IVP with ¢ € [0, n]Vn € Z*.
Note that if n < m then y,,(t) = y,,(¢)Vt € [0, n].
“ Y A\ Y, both satisfy the given IVP with ¢t € [0,n] and by uniqueness y,, = y,,, over [0, n]
Define y(t) = y,,(¢),0 <t <n
y#®) =y, (t)=e ¥ +12,y(0)=1y,(0) =1 (existence)

Uniqueness : Assume y, z are both solutions. Use the uniqueness of y,, to show y = z over R

Chapter 6: Numerical Methods
{% = f(t,y)

Y(to) = Yo

Sometimes, we can solve these, but that is uncommon in the space of possible functions. We do,
however, know there is a solution by the existence and uniqueness theorem.

Assuming a unique solution exists, can we approximate y(tf)?

The Lagrange Remainder Theorem

’ " (n) (n+1)
fla+m) = o) + LD Ty Ty JZH 1(;) -
¢ € la,a+ h]

fla+h) — f(a)
h

Mean Value theorem

n=0:lf(a+h)=f(a)+f/(c)hlz>f,(c):

~ linear approximation
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Euler’s Method
To approximate y(t ;) we divide [t,,¢;] into n subintervals of width h = @ Let t, = t, + kh for
k=1,...,n

B g
Y = Y1 FRf( 1, Y1) Yk Y

Getting the idea

Example
Approximate y’ + y2 + t2, y(0) = 1. Approximate y(0.2) using 1 step then 2 steps

Solution
First, prove that there is a unique solution defined over [0, 0.2].

~ [
1 Step
y(0.2) ~ 1+ 0.2(12 +0%) = 1.2 = y(0.2) ~ 1.2
2 Step
to - 07t1 - 01,t2 - O2,h - 017y0 - 1
v, =1+01(12+40%) =1.1

o o0
Y, = 1.10.1((1.1)* +(0.1)%) = 1.222
Yroh £(0.1,1.1)

Euler’'s Method: Error
Objective: Find an approximation for |y(¢,,) — v,,|-
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Use the Lagrange Remainder Theorem:

Setn =1 fla+h) = fa) + f'@h+ - Ip?
1 . tn _to
Substitute a = 5,, h = step size = f=y
n
Fty+h) = y(ty) +y' (t)h + (2 )hQ ito <cp <ty +h

y/:f(t’y)jy”:ft‘i'fy'y/:>ft+fyf
¢ T Ty
Y(trer) = y(te) + f(tk,y(tk))hw;ﬂ

h2
Y(terr — Yrr1) = ¥(te) =y + R(F (g, y(tr) — f(tes ur)) + g(ft + fyf)(®k7y(ck))
Fey(te) — (e, ur)
Y(te) — Y
= [t y(t)) — fte, ye) = (Y(te) — yk)fy(tka dy,)
Suppose |f,| < L, |f; + f,f| < D for constants L, D

By the MVT as a function of y: = f,(ty, dy), for some dy, between y(t;) and y,

Y(ther) = Uner = Y(tr) — e + R(f(tg, y(te)) — f(trs up)) + h_(ft + fyf)(%,y(@k))
= |terr — Uksa| = Brr = [y(tn) — vp + h(y(ty) — ui) £, (b, dp) + (ft + f,f) (e y(ey))| < By + hEL L+ %D

h2D
Eppn < A+hL)Ep+ — By =0
N — — 2
A B
k—1
E,<AE, ,+B<A(AE, ,+B)+B< A’E, ,+2B<A*E, , +) A'B
=0
Let k=n
B—A"B 1—(1+hL)"h2D (1 +hL)* —1)hD
= = = <
1—A 1—1+4+nh 2 " 2L
(hL)"_l Dh al _ 1\D
e
g < )Dh (et —1) ,
2L 2L
N —— —

constant with respect to step size

~ We say the error is O(h) (asymptotic towards 0)
1
or O (—) (asymptotic towards co)
n
Example
Suppose the error is estimating the value of a solution to a 1st order IVP using Euler's method is

approximated to be no more than 0.1. What changes should we make in order to guarantee the
error does not exceed 0.01?
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Solution

Decrease the step size by a factor of 10 because the error is O(h). (multiply & by % or multiply n
by 10).

Alternative Approximations
t+h

t+h
y(t+h) = y(t) + / y(s)ds=y®)+ [ f(s,y(s))ds

t t

Left Endpoint
~y(t) +hf(ty(t))

= Y(ter1) = y(te) + hf (e, y(ty))
Yp+1 = Y + hf(ty, ys), which is the Euler's Method

Runge-Midpoint

t+h
/ f(s,y(S))dsmli.f t+g7y(t+g>

base ~——
midpoint

h
= Yp+1 = Yk + hf (tk + E)yk+;>

h
k= f(tkayk);yk—k% =Y+ §fk

E, = O(h?) (asymptotic towards 0)

h
Jr = f(tmyk)atmg =1+ 5

h
yk—i—% =Yt ifka flﬁ—5 = f(tk+%7yk+%>
Y1 = Yp T+ hfk+§

Runge-Trapezoidal
fk = f(tkayk)aak_i_l = Yk + hfk

~

fra = f(tk+1’ fk+1)
Yer1 =Y+ 5 (fk + ka)
E,=0(h*)  (asymptotic towards 0)

Runge-Kutta
Apply Simpson’s approximation to ffh f(s,y(s))ds

Error is O(h*) (asymptotic towards 0)
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Simpson’s rule: for every three points, make a parabola out of them, then integrate that approxi-
mation rather than the original graph.

Example
Approximate y(0.2) using midpoint and trapezoidal methods where y satisfies d—zt’ =t+y2,y(0) =
1. Use 1 step.

Solution
Midpoint
n=1h=021t =0t =011t =02y, =1
fo=£0,1)=0+1*=1
yp=1+01-1=11
fi =01+ (1.1)>=0.1+1.21 = 1.31
¥(0.2) ~1+1.31-0.2 = 1.262
Trapezoidal
j,=1+1-02=12
f,=02+122=02+144=164
0.2
=1+ (1+164) =1+0.1(2.64) = 1.264
Example
Error <0.1,n =10
How many steps to guarantee error < 107°
Solution

Euler: Error is:

1
O(h)=0 (—) = division by 10* = multiply n by 10*
n

Midpoint and Trapezoidal: O(h?) = n = 1000 steps
Runge-Kutta: O(h*) = 100 steps

Chapter 7: Higher Order Linear Equations

Definition of Linear Equations
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Y™ +a, (0)y" Y +ay ()Y (1) + ayy(t) = f(t)
Let D = i Then,
dt

D[yl + a, (t)D" " [y] + -+ + ay(t) D [y] + ayy = f(t)
= L=D"+4a,D™ Y + ...+ a,(t)D+a,(t)I
L(y) = f(t)

Lleyyy + ¢ays] = €1 L[y1] + c5L[ys]

for constants c¢;, ¢y and functions y;, y,

Uniqueness and Existence Theorem for Differential Linear Equations
Let I be an open interval, and let a; (%), ..., a,, f(t) be continuous functions over I. For every

ceey Uy

ty € I and every y,, ..., ¥,,_; € R the following initial value problem has a unique solution:

,

Y+ a, ()Y + o+ ag()y + ay(t)y = £(¢)
y(to) = Yo
9 Y (to) =¥

Y"1 (tg) = Yna

\

General Solution to a linear differential equation from a particular solution

The general solution to a linear differential equation is Ker L + Yp, where Y;) is some solution to
the equation.

General Solution
A solution involving some constants, where changing constants will yield all possible solutions.

Example
Show y = ¢, et + cpet with ¢;, ¢, € R, is the general solution to y” —y =0

Solution
First, show that y = ¢, e’ + c,e " satisfies the given differential equation.

Let L =D?—1I= Lly] = ¢, L[e'] + cyLle t] = ¢, (" —€') + cy(e7t —et) =¢;(0) + ¢5(0) =0
Next, we will show that there are no other solutions.

Let y; be a solution to y” — y = 0 where it satisfies the IVP:

Yy —y=0
y(0) = 4:(0)
y'(0) = y1(0)

We will find some ¢, ¢, such that y = ¢, e’ + c,e* also satisfies the IVP.
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1 (
y1(0) =¢; — ¢y
¥1(0) +y1(0) = 2¢;
y1(0) —41(0) = 2¢,
Lo = 10 +510) 500 —51(0)
2 2 2

Therefore, for any y,, where y; is any solution y” —y =0, y = ¢, + c,e* can be that solution.
Because it can represent any solution, and all solutions satisfy the differential equation, y = ¢, e’ +
c,e ! is the general solution to y” —y =0

Particular solution
Some solution to a differential equation.

Find the General Solution to a linear differential equation
1. Find the general solution Y (¢) to L[y] =0

2. Find a particular solution Y, (¢) to L[y] = f[t]

3. The general solution to L[y] = f[t] isY_.H + Y_p

Find the general solution to homogenous linear equations

Example
Find the general solution to 4" — 53" + 4y =0

Solution
First, because the coefficients are constant, assume a solution is in the form y = e®.

y = ett y/ — cett ,y// — ®2ect
= c?e® — 5ce® + 4e®t = 0
= (¢ —5c+4)e =0
=c?—-5c+4=0=ce{1,4}.

t L4t

= y = €', e*" are solutions

~ We claim y = ¢, e’ + c,e! is a general solution.
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Set L =D? —5D +41.
By linearity, L[c, e’ + coe’] = 0 so ¢ e’ + cye? is a solution.
Let y; be a solution.
To be a solution, it must fulfill the following IVP, which uniquely constrains it by the E & U theorem.
Lly] =0
¢ +¢; =y,(0)
¢1 + 4cy = y1(0)

¢, = 4y,(0)—y1(0)
We can find ¢, ¢y such that they fulfill the IVP : , 8
cy = y1(0)43-y1(0)

Since we can generate all solutions, our solution is a general solution.

Is this always the general solution?
Y= @167’1t + 0:26T2t 4 4 @nernt
®1+C2+...+Cn :yo

T1Cy + T9Cy + ... + T9C, = Y N

P le, +ri ey + .+ 18 e, =y
1 o 1
ry o1, Cy (yl)
: 0:. B n
r?il e 7"2_1 n y
Dimension of the Solution Set for a Linear Equation

Suppose L[y| = 0 is a nth order linear equation with continuous coefficients over an interval (a, b).
Then, the solution set is an n-dimensional vector space.

Proof
This solution set is Ker L, which is a subspace.

Fix t, € (a,b). Every solution y =Y to L[y] = 0 satisfies some IVP:
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Llyl =0

y(to) =Y (to)

ynU(ty) = Y 1(ty)
Let N,(t) be the solution to

(Lly] =0
y(t()) =0

—_

y(j) (to) =

Linear Independence:

n—1
Supposez c;N;(t) = 0Vt € (a,b)

=0
Substitute ¢ = ¢,

Then differentiate: ¢ N{(¢t) +--+¢, 1N, _1(t)=0=¢, =0

Cp=¢C;="=¢C =0
Spanning:
Lly] =0
Let Y satisfy : jy(tO) — Y

Yy D(ty) = Yp1
Claim: Y'(¢) = yoNo(t) + y1 N1 (¢) + -+ + yp,_1 N,,_1 (1)
LIY] = LlyoNo(t) + 41 N1 (1) + - + yp 1 N1 ()] =
YoL[No(®)] +y1 LIN; ()] + - + Y1 L[N, 1 ()] =
Y0(0) +41(0) + -+, 1(0) =0= L[Y] =0
Y (tg) = yoN(gk) (to) + -+ Yp1 Ny _1(to) =y if k=0,....,n— 1
Thus, by the existence and uniqueness theorem, the claim holds

|

Fundamental Set of Solutions
A basis for Ker(L[y]), where L[y] = D" + a,,(t)D" ' + -+ + a5 (t)D + a4 (¢)

Natural Fundamental Set of Solutions
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Let N;(t) be the solution to

The set {Ny(t), Ny (t), ..., N,,_1(t)} is called the natural fundamental set of solutions.

Example 7.4
Given that e?, €2t are solutions to y” — 3y’ + 2y = 0, find the NFSOS at ¢ = 0

Solution
ot o2t
Wet, e?'] = det (et 2@2t) =e" #0
= y = ¢, e’ + c,e?! is the general solution.
y' =3y +2y=0
y(0) =y, satisfies
y'(0) =
€1 +C2 =Y
y =cefeye’ = {cl Foe, =y, = Y= oyl + (n —wo)et
— pol2e! — )+ (e — )
Ny = 2t — e N, = e? — et forms the NFSOS at ¢t = 0.
Wronskian

Suppose Y7, ..., Y, are solutions to L[y] = 0. When do these solutions form a fundamental set of
solutions?

Yy, =¢,Y; +--+¢,Y, has to be the general solution to L[y] = 0. In other words, for every
Yo ---» Yn_1, there must exist ¢4, ..., ¢,, such that
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¢, Y1 (ty) + - +¢,Y,(t0) = Yo
¢, Y (ty) + - +¢, Y (to) =y

Y7 () + - + ¢, Y () = vy

n Cq Yo
Y/ (t - Y/(¢
- 1 (to) : a(to) “3:2 _ 3/:1
n—1 n— Cp Yn—
YV (tg) o Y () !
Yi(to) Y, (%)
Y{ (to) Y, (to)

=~ det #0<Y],..Y, form a fundamental set of solutions.

n—1 n—
Y V() - YV (k)

n

Yit) o Y(d)

Yi(t) - Y

The determinant : WY, ..., Y, |(t) = det ! is called the Wronskian

YV () - ()
Yy, ..., Y, is a FSOS iff 3t,, W[Y;, ..., Y, ](ty) # 0 iff V¢, W[Y,...,Y,](t) £ 0

Generic Example
We know ¢? — 1 and ¢ are solutions to (1 + ¢%)y” — 2ty’ + 2y = 0. Find the general solution. Use
that to find a solution satisfying y(0) = 2,y’(0) = 3.

Solution
b 2
1+27 T1xe

"

Yy —2

y=20

2
W[t2—1,t]:det(t 2t1 i) =2 1-22=—1—1240

= the general solution is | y = ¢; (t2 — 1) + ¢yt

Abel’'s Theorem

Suppose W is the Wronskian of n solutions of to an nth order linear homogenous differential
equation L[y] = 0. Then, &¥ + a, ()W =0 where L = D"+ a,(t)D" " + - + ay(t)D + a; (t)1.
Furthermore if 3t,, W(t,) = 0, then V¢, W (t) = 0.

Proof of the furthermore
IVP
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{% +a,(t)z=0
z(ty) =0

Then, this IVP has two solutions, z =0,z =W = V¢, W(t) =0

Proof of the rest of the theorem

Vi) - Y0
W —da| HO T XO
AAORNS S0
Yt Yi(t) Y (1) Y, (¢ Vi(t) = Yo(t)
W _ger] DEER O D IR OB LB I O IRR £0
n ) - Y ) nY ) - YY) ) - V)
Vi(t) = Yo(0)
| YO V)
Y - v

Each Y; satisfies this differential equation:
Lly) = y™ () + a, (O)y ™D (t) + - + ay (t)y(t) = 0
n n—1
Y 4 a, ()Y 4 ay (0)Y;(t) = 0
Perform the following row additions:
Rn + a’l (t)Rl + a/2(t)R2 + + a/n_l (t)R’n—l — Rn
This should not change the determinant because row addition doesn't change determinants.

The jth entry of the last row becomes

n ’ n—2 n—1 n—1
VY b ay (Y, + a0+t a0V = L[Y] -, Y = —a, (V"

Yy (t) w0 Y (8) Yi(t) - Y,(t)
d Y/ (t Y/(t Y/(t) - Y/(t
—a, (Y] —a, (Y AR
dWw
dt + a’I’L( )
Example

Suppose the Wronskian W of 3 solutions to the equation y” — 2ty” — y = 0 satisfies W (0) = 1.
Find W (t)

Solution
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y”" —2ty" —y=0=>a3(t) = —2t,a5(t) = 0,a,(t) = —1
dw
By Abel's theorem e 2tW =0

di .

6_t2W == Cl

W =ce”

W) =1=c,=1=W=¢"
Example

Prove that if the Wronskian of one FSOS to L[y] = 0 is constant, then the Wronskian of every FSOS
is constant.

Solution
If W,, W, are Wronskian corresponding to two FSOS

dw
and W, = ¢, then Tl +a,t)W;,=0=0+a,(t)c; =0

= a,,(t) = 0 because ¢, is nonzero because the Wronskian is of an FSOS.
dw,
dt

dw
= +0W2:0:> dt220:>W2:C2|:|

Theorem on the Wroskian’s functioning

Suppose fq, ..., f, : (a,b) = R are (n — 1) times differentiable. Assume f,, ..., f,, are linearly de-
pendent over (a,b). Then, W|[f,..., f,](t) = 0 for all t € (a,b).

Proof
dcq, ..., ¢, € R not all zero such that V¢ € (a,b)c, fi(t) + -+ ¢, f,(t) =0

Differentiate (n — 1) times
e fi(t) + -+ e, fu(t) = 0
e /i) + e, £ () =0
A )

/ ’ Cy 0
N EACIEAC (5):(J
‘ Cn 0

AV e frh (@)
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Chapter 8: Linear Equations with Constant Coefficients
L=D"+a,D" '+ +ay,D+a,l

ay,...,a, € R (constant)

Example
Find the general solution to y” + 7y’ + 12y = 0.

Solution
Assume y = eM = ¢/ = AeM = y” = NZeM
= NeM 4+ TAM +12eM =0= N2 +TA+12=0= (A+3)(A+4) =0
A= —-3,—4 = e 3" and e * are solutions
—3t —at
-3t —4t] _ € € P ¢
We 3t e ] = det (—36_3t —46_4t) =—e £
|y = e 4 o et
Example

Find the general solution to:

y//l+2y/l_y/_2y:0

Solution
Let y = €.
y = ze*
y/ — 22 — ezt
y// — Z36zt

=224222—2-2=0=(2—-1)(z+1)(2+2)=0

z=1,-1,-2=y={e', e e 2"} are solutions

et et e 2 11 1
W[et,e_t,e_zt] =det| et —et —2¢2t | =e€t-et-e2det|1 —1 —2

et et  de—2t 11 4
1 1 1
_ 67% det 1 1 ) Vantermonte:Determinant 67%... # 0
2 2
1 (=1)" (=2)

Then, by a theorem, y = ¢cjef + cye™t + cge™

Definition of Characteristic Polynomial
p(z) = 2" +a,2" ! + -+ ayz + a, is called the characteristic polynomial

L=D"+a,D" '+ +ay,D+ayl

ag,...,a, € R (constant)
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Linear Independence of Exponentials
Given distinct complex numbers 2, ..., z,,, the functions e*1?, ..., e*»* are linearly independent.

Proof
If Wlent, ..., e*t] # 0 for some ¢t € R then e*1?, ..., e*»* are linearly independent.

ezlt eznt
z.esit .z eZpt
1 n
Wl:ezlt’ ...’eznt] = det .
Z?_lezlt ngleznt
n—1
1 z; o 2]
— ety det | T 22 3| 2 esrt ety (2; — 2;) # 0 because z; # 2
- . - j k j k
n>j>k>1
veo gn—1
1z, zZn

Proof 2, electric boogalo
By induction on n

Basis step:

Inductive Step:

Assume 2, ...,z,,, are distinct.
n+1
z;it __
Suppose E c;e®" = 0 for some ¢y, ...,¢, . €C
G=1
By differentiation ¢, ze* + - + ¢, 2z, € + ¢, 11 2,1 €71"
n+1
z;t 2zt z,t Zpt1t) — ) —
E c;e7t — (eyz1€M" + o F ez et d e 2, 670) =00
G=1

1 (2py1 — 21)€ 4 o €, (201 — 2 )€t 4 it (Znpg — Zngs JETHE = 0
®l(zn+1 — zl)ez1t 4 4 cn<zn+l _ zn)eznt — 0

By the inductive hypothesis,

Since Vj, 2,1 #2;=> ¢, =-=¢, =0
n+1

. z;t Zpe1t —
R E c;je®i’ =c et =0
=1

:>®TL+1:0|:,

Example
Solve the equation y” + 2y’ + 2y =0

Solution
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L=D?*+2D+2I

2422422 (2412 4+1=0—-—1+i
y = e(7179t =1+t g5re solutions

L[+t =0
Lle *(cos(t) + isin(t))]
Lle tcos(t)] + Lle i sm(t))]

Lle " cos(t)] + iL[sin(t))] =
Lle*cos(t)] +iL[e™* sm(t))]
et

e
[e™! sin

Lle~tcos(t)] =0
L ®)] =0

Since e~* cos(t) and e 'sin(t) are not scalar multiples, they are linearly independent and the general solution is:

y = c,e ' cos(t) + cye ! sin(t).

In general if a + b is a root of the characteristic polynomial, a,b € R then
Lle* cos(bt)] =0
Lle* sin(bt)] = 0

Example
Solve y” +2y”" + 3 =0

Solution
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=224224+2=0

= 2(22+224+1)=0
= 2(z2+1)° =0
=2=0,-1,—-1

e% et et are solutions
but this is not enough, because e? is linearly dependent with e~* = we need one more solution
p(z) = (z+ 1) +22(2+1)
P(-1)=0,p'(-1) =0

(-2)

(D3? +2D? + D)[e*!] = (23 + 222 + 2)e*
We will differentiate both sides with respect to z:

0 0
—D = D— by Clairaut's Theorem
0z 0z

9 3 2 zt] 0 3 2 zt
2 (042D 4+ D)[e] = (2 422+ 2)e)

(D3 +2D?% + D)[te*"] = (32® + 4z + 1)e* + (2° 4+ 22° + z)te™
z=—1=
(D3+2D?+ D)[te!] =0
=y=1,e"t te?

Apply the Wronskian or apply the definition of linear independence.

—t

y=1,e7t te~t are linearly independent =

Yy =c; +cyet + cgte?

Key Identities (Showing why n repeated roots)
P(D) [tnGZt] — Z <Z)p(n—k) (Z)tkeZt,

k=0

Proofish
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Suppose L(y) = D" + a, D" ' + - +ay,D+ a;I = p(D),a; € R
Vz e C,t € R, L[e**] = p(z)e*
0

9
Since D— = —D
mce 82 8z

P(D)[e"] = p(z)e*
take the derivative with respect to z:

2= 2 a2

P(D)[te®] = p’(2)e™ + p(z)te*
take the derivative with respect to z:
P(D)[t?e*'] = p”(2)e + p/(2)te®® + p’(2)te** + p(2)t?e*
P(D)[t?e*!] = p”(2)e™ + 2p’ (2)te™ + p(2)t?e™
P(D)[t3e*'] = p” (2)e** + 3p” (2)te™ + 3p’(2)t%e* + p(2)t3e™

Via induction on n can prove:

zt

P(D)

n

P(D)[t"e*] = Z <Z)p(n—k) (2)tke.

k=0

Definition of multiplicity
We say ¢ € C is a root of a polynomial p(z) with multiplicity m if p(z) = (2 — ¢)"q(z), where q(z)
is a polynomial and ¢(c) # 0.

Theorem on multiplicity after derivatives

Suppose ¢ is a root of the polynomial p(z). Then ¢ has multiplicity m iff p(c) =p’(c) = - =
p™~Y(c) = 0and p™(c) # 0.

Proofish

Start with p(z) = (z — ¢)"q(2)
'4(2) + (=) (2)
= (2= )" (ma(2) + (2 = ©)¢'(2))

not zero at ¢, just another q

p'(z) =m(z—c)"

(p—2)° = 1 so no longer works

Zero derivatives from repeated roots
Suppose ¢ is a root of multiplicity m of p(z) then P(D)[e?*| = P(D)[e*] = P(D)[te] = - =
P(D)[t™1et] = 0.

Theorem to find solutions of differential equation
Real roots r with multiplicity m — e, te™, ..., t™ te™,
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Non-real roots a+ bl with multiplicity m —
e cos(bt), e sin(bt), ..., t™ e cos(bt), t™ e sin(bt)
L=P(D),p(z) =0
1. Find all roots of p(z)
2. For every real root r with multiplicity m consider e, te™, ..., t™ le™
3. For every pair of non-real roots a + bi with multiplicity m consider
e cos(bt), et sin(bt), ..., t™Le cos(bt), t™ e sin(bt)

4. Take a linear combination out of those considered for your solution.

Example

Solve each of these equations:
1' y/l/l + 6yll + gy — 0

2. (D2+1)*(D—I)’Dy =0

Solution
Equation 1
p(z) =21 +622 +9= (22 + 3)2 = z = +V/3i with multiplicity 2
by the theorem, y = c¢; cos(\/gt) + ¢q sin(\/gt) + cat cos(\/gt) + ¢yt sin(\/gt)

Equation 2
p(2) = (2 +1)"(z— )%
z = +¢ multiplicity 2
= 1 multiplicity 3
= 0 multiplicity 0
Y = ¢4 cos(t) + ¢, sin(t) + c3t cos(t) + ¢yt sin(t) + cxe’ + cgte’ + cpt?el + ¢

Reduction of Order
Suppose a linear equation L(¢)[y] = 0 has a solution y,. Then, the reduction of order may be used
to reduce the order of this equation by setting y(t) = y,(¢)v(t)

Example
We know et toy” — 2y +y =0

Solution
We will find the second solution by the method of reduction of order.

Yo =€ =>y=co(t) =y =ev(t)+e +v(t) =y = ev(t) + 2e"/(t) + e'v” (t)
= elv(t) + 2e'/ () + e'v” (t) — 2(efv(t) + e + v/ (t)) + e'v(t)

=elv" =0=10" =0 = v ="1tis a solution

= te! is also a solution
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Example
Given y = t is a solution to t2y” —t(t + 2)y’ + (t + 2)y = 0 with ¢t > 0, find the general solution.

Solution
We will use the method of reduction of order.

<
eo-O
o~

v(t) =

= v(t) +tv'(t)

20 (t) + v ()+tv()
v”t3+v(2t2+t +2)) +o(—tt+2)+tt+2) =0

= v"t3 + v’ (—t )—O=>v v = e 1sasolution=>y:a:1t+a:2tet

Method of Undetermined Coefficients
We need to find a particular solution Y, such that L[Y, | = f(%).

Suppose the forcing is f(t) = g(t)e® cos(bt) + h(t)e* sin(bt) where g and h are polynomials. Let
d be the largest degree of g and h. Let L = p(D) and m be the multiplicity of a + bi as a root of
p(2). (i.e. p*)(a 4+ bi) =0 for k=0, ...,m — 1. If p(a + bi) # 0,m = 0.) We write the Key Identities
starting from the mth derivative.

Let z=a+ bi
L[tme*] = plm)(2)e* + ) plm e

m+1 m+1

(m= E
1 z)e*t +

L[tm+1ezt] :p(m+1)(z)ezt + ( )p(m)(z)tezt +
d
L[tm+dezt] :p(m+d)<z>ezt+___+ (m;— )p(m)(z)tdezt+ m p(m—l et 1 ...

So you will gather polynomials of degrees 0,1, ...,d x e**

By an exercise, we can get any polynomial of degree < d x e*
In sum,
Y, = t"™(Ay + Ayt + -+ Agth)e cos(bt) + t™(By + Byt + - + Byt?)e sin(bt)
then just solve for the coefficients via Key Identities.

Example

Find a particular solution to y” + 2y = €%

Solution
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L=D*+1,p(z) =2*+2
L[e’] = p(5)et = (5% + 2)e5 = 27e5!
1

=Y, = Eef’tYh = cos(\/ét) + ¢y sin(\/ét)

ny= 2—1765t + ¢ cos(\/it) + ¢y sin(\@t)

Example
Find a particular solution for y” — 6y’ + 9y = 4e3!

Solution
p(z) =22 —62+9=(2—3)%,L=p(D)
Key Identities:
L[e3*] = p(3)e3* = 0 not helpful
L[te®] = p(3)te3 + p’(3)e3" = 0 not helpful
L[t?e%] = p(3)t2e3t + 2p’(3)te3! + p”(3)e3 = 2¢%

=Y, = 2t%e¥

Example

Find a particular solution for y” + 2y’ + 10y = cos(2t)

Solution
p(2) = 22 + 22+ 10, L = p(D)

Since the forcing is cos(2t) = Re(e?'), we sub z = 2i n the Key Identities.

Key Identities:
L[e?"] = p(2i)e?™ = (6 + 4i)e**

2t 2t
A — 2t = [ |Re| ———
6 + 41

6 + 44
2it 6 — 4;)e2it 6 %) + Asin(28) + il
- = ) e (G ) et )

= Re(e?™)

3 cos(2t) + 2sin(2t)
Y'p =
26

Example
Find a particular solution for 3” + 2y’ + 10y = 4te?t

Solution
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p(z) =22 +22+10,L = p(D)
z = 2 from the forcing
Key Identities:
L[e?*'] = p(2)e?" = 18te*
Lite**] = p(2)te? + p’(2)e* = 18te?* + 6e*

1
« L[te*] — =L[e*] = 6e?" + 18t — 6e** = 18te? = 18te*

3
Llte2t _lL 2t
[te”] — 5Ll ]-4:4t€2t
18
2 2
=Y = _te?t — —e?
P9 27

Example
Find a particular solution for y” + y = sint + ¢

Solution
p(z) =22 +1,L = p(D)
y’ +y=sint + t

-«
z2=1 2=0

since z = 7 is a simple root of p(z) the first Key Identity does not help.

L[te"] =WO +p’(i)e't = 2iet

L[t;; ] - L[Im (t; )] = sin(t) = L[_tZOSt] — sin(t)
z=0:

L[1] = p(0)e” = p(0) = 1
L[t] = p(0)te® + p’(0)e% = ¢

—tcost
:>L[ c0s ]zsin(t),L[t]:t
tcost

:>L[t Cgs ]:sin(t)-i—t:. Yp:t_tC;St

Example using the theorem
Find a particular solution using the method of undetermined coefficients.

1. y” + 4t = tcos(2t)

2.y — 6y’ + 9y = 4e3

3. ¥y + 2y + 10y = 5e t sin(3t)
4. y" + 3y’ — 4y = 2sin(t) cos(3t)
Solution

For 1:
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a=0,b=2p(2)=22+4,d=1
p(2i) =0,p'(2i)) =di=m=1
Y, = t(Ay + A;t)e cos(2t) 4 t(By + Byt)e® sin(2t)
= Ayt cos(2t) + At cos(2t) + Bytsin(2t) + B;t? sin(2t)

substitute into the equation and set the coefficients equal to 0 and solve the system.

For 2:
p(z) =22—624+9=(2—3),a+bi=3,m=2,d=0
Y, = t?(A4,)e
Y, = Agt? - 3¢® + 244t - €%
Y, = 6Agte® +9Ayt%e® + 24,€% + 6A,te™
Y, —6Y, +9Y, = €% (24,) + -
= Ay =2
Y, = 2t%e?
For 3:
p(z) =22 +22+10;a+bi=1+3i,d=0,m =1
Y, = tAye " cos(3t) 4+ tBye " sin(3t):
For 4:
We will have to convert 2sin(t) cos(3t) to a sum
2sin(t) cos(3t)
_, eit _ gt gidt 4 o—i3t
21 2
= _ezt ;ielt (ei3t 4 ¢~i3t)
e—dit o2t 2it it

24 + 24 24 + 27
= sin(4t) — sin(2t)
Find Y, by forcingsin(4t) and sin(2t) separately

Variation of Parameters
L[y] = 0 has a known FSoS Y7, ..., Y.

Objective: find a particular solution for L[y] = f(¢)
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Y, =u,Y; +-+u,Y, where uy, ..., u, are functions of ¢

Y, =u Y{ + 4w, Y, +u Y+ +u,Y,

Let this be 0 hopefully
V) =u Y 4+, Y +uiY 4+ Y,

0

YD — VY b, VD 4 Y Y2

0
1/;5”) _ u1Y1('n,) 4ot unYrgn) + u/lyl(nfl) 4+ u;YTSn)

L[Y,] = w LT + up LT + -+ w, LT+ ui Y a1 = £ (1)

(W)Y, + - +ulY, =0
WY+ ulY, =0

w7 ey =0

V" e Y = £()

Yy, - Y, / 0
Y, Y “ :
: 171 0

u/
Yy Ly n f(t)

Note we only need one ntuple (uq,...,u,,)
Example

Find a solution for y” 4+ y = tan(t)

Solution

Make sure the equation is in standard form Y; = cos(t), Y, = sin(t)
Y, = uy cos(t) + uy sin(t)
u} cos(t) + ub sin(t) = 0
=
—uf sin(t) 4 u} cos(t) = tan(t)
Chapter 9: Power Series Solutions
The Idea
Y +pt)y +q(t)y =0
Write y = Y a,(t—1)" (¥
n=0

Substitute y,y’,y”,, then obtain a recursion a,,

Solve for a,,

73



If we know a/all solution of the form (x) exists, then we are done.

If can show (*) converges, then (x) would be a solution.

Analytic
f(t) is analytic at t, if f(t) = 3°°° a,(t —t5)"3IR > OVt € (t; — R, ty + R)

Composition of analytic functions via addition, multiplication, and division
Suppose f(t) and g(t) are analytic at ¢t = t,. Then the functions f(t) + g(¢t) and f(t)g(t) are also
f(t)

analytic at ¢ = t,. Furthermore, if g(¢,) # 0, then S Is analytic at ¢,

Ordinary Point

A point ¢, is said to be an ordinary point for the equation y” + p(t)y" + q(t)y = 0 if p(¢) and q(t)
are analytic functions at ¢,,. If the equation is not in normal form but can be written in normal form
in such a way that the coefficients are analytic at t = ¢, we still call ¢, an ordinary point of the
equation.

Theorem for showing that an answer is analytic

Suppose p(t) and ¢(t) are analytic at t,. Then every solution to the equation y” + p(t)y’ + q(t)y =
0 is analytic at t,,. Furthermore, the radius of convergence of the Taylor series of each solution
centered at ¢, is at least the minimum of the radii of convergence of Taylor series p(t) and q(t)
centered at ¢,

Example
Solve y” —ty =0

Solution
0 and —t are analytic with radii of convergence oco. By the previous theorem, every solution is an-
alytic.
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n=2
ty = z:ant”“rl nzt Zan 1"
o _ 9 o0 o0 o
n(n—1)a,t" 2 "E (4 2)(n+ Day oty —ty =Y (n+2)(n+1)a,5t" — > a, 4"
n=2 n=0 n=0 n=1
= (04 2)(0 4 1)ag,,t° + Z n+2)(n+1)a, t" Za i
n=1

—2a,+ > ((n+2)(n+ 1)a,,, —a, ,)t" =0

n=1

=a,=0AN(n+2)(n+1)a,,,=a, YVn>1

as ag
a6: =
6x5 6x5x3x%x2
a, ag
a7: =
Tx6 T7Tx6x4x3
as
8x 7
Claim :
Qg
(B3n)(3n—1) B3n—3)(3n—4) Bn—6)(3n —7) - x 3 x 2
a;
Bn+1)3n) Bn—2)(3n—3) -+ x4 x3

A3pt2 = 0

a/8:

Azp =

A3pt1 =

: prove by induction

Therefore, the general solution is

y= Z(a3n)t3" + Z 31t
n=0 n=0
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Example
Solve y” + 2y’ + 2ty = 0,y(0) = 1,%/(0) = 0.

Solution

t2 and 2t are analytic with a radius of convergence of co. Thus, the solution to this IVP (which
is unique by the existence and uniqueness theorem for linear equations) is also analytic with a
radius of convergence co.
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n=0
o0
Yy = na, t" !
n=1
o0
Yy’ = Zn(n —1)a, t" 2
n=2
oo
y = (n+2)(n+ a,,t"
n=0
oo o0
tgy, = Znantn+1 = Z(TL - 1)(a’n—1)tn
n=1 n=2
oo o0
2y = 2a,t" =) 2a, ,t"
n=0 n=1

y" + 17y + 2ty =
2a4 + 6ast + 2a4t + Z((n +2)(n+1)a,, o+ (n—1)a, 4 +2a,_)t"
n=2
2(1/2 = 0
6a3 + 2&0 == 0
(n+2)(n+1)a,.o+ (n+1)a, ; =0vVn >2

=

= _%
a/3 =73 =
_an—l
Ont2 n+2

W=y
Qg
=%
a Qa
_ 3 0
a6 —_— T —
6 6x3
ay
=TS
as
ag :—g =0
Qa Qa

%3n = 37n! - 3nn!




Example
Solve

y + (2 +2t+ 1)y — (4 +4)y=0
y(-1)=0,y'(-1) =1

Solution

Note that both t? + 2t + 1 and —(4t + 4) are analytic at t, = —1 with a radius of convergence of
Q.

Set s=t+1,2(s) =y(t+1)

2" 4+ 822 —4s2=0

z2(0)=0
2(0)=1
z= Z a,s" = —4sz = Z —4a,, s" = Z —4a,, 48"
n=0 n=0 n=1
oo oo
z = Znans”*1 = 527 = Znanz”Jrl = Z(n —1)a,,_,s"
n=1 n=1 n=2
2" = Z n(n —1)a, s" 2 = Z(n +2)(n+1)a, 5"
n=1 n=0

2"+ 522 —A4sz =

2a9 + 6ags — 4ays + Z(—Zlan_l +(n—1a, 1+ (n+2)(n+1)a,,,)s" =0
n=2

= a3 = 2a_3f)
_ _ (n=5)a,_
U2 = T Tnrnel)

200 =0=a;=0=0a3=0
Z0)=1=a, =1

g = FBa 1
4 4%x3 4
. _ (=2)(ay) _
5 5x4
. _ (=1)(ag) _
67 6x5

a7 :0,a8 :O,ag :0
e
By induction a,, =0,n > 5,2 = s+ 1 » the solution to the IVP is

t+1)*
y:t+1+( 4)
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Singular Point
p(t) is unbounded near to t, or ¢(t) is unbounded near ¢,

Vi€ (tg—etg+¢e) —{to}, ~IM, [p(t)| < M Afq(t)| < M
and p, ¢ are continuous on (t, —&,t, +¢) — {to}-
Example

{p(t) _ sm(t)q(t) _ cos(t) = sin(t) _ Z % is analytic, 0 is not a singular point
n=0 :

t t

) = cos(t)
{p( ) t =t=01is a singular point

Series solutions near regular singular points
Euler's Equation
t2y” + aty’ + By = 0, a, B € R is called an Euler's equation.
r(r—1) 4+ ar + g = 0 is called the indicial equation.
Solution
y=t" =y =rt" Ly =r(r—1)t2
t2y” +aty + By = (r(r—1)+ar+p)t" =0
r(r—1) 4+ ar+ =0 - solve for r — 2 solutions, probably

Find the two roots of the equation. If the two roots are distinct and real, then you have two linearly
independent solutions. If they are not distinct, you multiply an answer by log(¢). If you have nonreal
roots, you get stuff with cos and sin

Example

Solve for t > 0:

1. t2y” + 6ty +4y =0

2. 12y + 3ty +y=0

3. 4t%y” + 20ty + 25y =0

Solution
1.
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Set y =1t"
y =rtm Ly =r(r— 1)t 2
t2y” + 6ty +4y = (r(r—1)+6r+4)t" =0
=r(r—1)+6r+4=0
=r={-1,—4}
=t~ At™* are two linearly independent functions by the fact they are not scalar multiples of each other
el
t

s — C2
LYy = +t_4

r?+2r+1=0=r={-1,—1} = y=1t""is a solution
We will find another solution via reduction of order.

y=tlv=y = —t2u4+t W,y =230 — 2720+t
t2y” + 3ty +y=t" + (=2 +3)v + (0)v =0

w=v’ , 1
= tw' +w=0= (tw) =0:(tw)=1:w=¥:vzlog(t) is a solution

log(t)
=y = h

c ¢,y log(t
= y=14+ ZTg() is the general solution

t

is a solution

4t2y” + 20ty’ + 25y = 0

3
:>4r2+16r+25:0:>(2r+4)2+9:0:>r:—2:|:§i

$ — 2451 — =2 5ilog(t)

— 2 (cos (g log(t)> + isin (g log(t)))

real and imaginary parts are both solutions

= {t2 cos@ 1og(t)),t2 sin(g log(t))} Cy

3 log(t in(2 log(t
Ly c; cos(3 log( )):2—@2 sin(3 log(t))

Regular Singularity
We say t, is a regular singularity for y” + p(t)y’ + q(t)y = 0 if ¢, is a singularity and (¢ — t,)p(¢) is
analytic and (¢ — t,)?q(t) is analytic around ¢, but not necessarily on it.

Motivation
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(t—t0)*y" +alt—to)y + By =0

o p
p(t) = qﬂ(t) = m

But this has a solution, so we should see why this happens.

Example

(t* =22+ 1)y" +(t—1)y +3y=0
Solution

t—1 1 .
p(t) = 5 = 5 is unbounded near t = +1
(2 —1) (t—1)(t+1)
3
q(t) = 5 5 is unbounded near ¢ = +1
t—1)%(t+1)
Singular points are + 1
Fort,=1:
1 2
t—1p(t) = —,(t—1)"q(t) = ———, both are analytic near 1.
(t—1)p(t) TR (t—1)"q(t) (T
~ 1 is a regular singular point
For ty = —1:
1
t+1)p(t) = ——————— is unbounded near 1
t+Dp®) = 751
~» —1 is an irregular singular point.

Example

Find a Fundamental Set of Solutions for

1
ty” +ty’ + (tz—é—l)y:O,t>0

Solution
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1 £ — 1
p(t) = 7 q(t) = 2 4 = regular singularity at t,

y = tTZant”,aO #0
n=0

o)
Y= Z antr-i—n
n=0

o oo
= (r+nt =ty = (r+n)a,t"
n=0 n=0
o0 o
Z (r+n)(r+n—1)tr"2 =2y = Z(’r +n)(r+n—1)tt"
n=0 n=0

y — Z a, tr+n+2 Z a,_ 2t7"+n

1 21
T — E _ +
_4y — 2 4(lntr n

1
=24ty + 2y — ~y

4
=|r(r—1ay+ ray — 1% tr
~—— ——
from ty” from ty’ —
from 7iy

+

1
((r + 1)ray + (r+1)a; — Zal)tTH

n
M]3

1
((r—f—n)(r—l—n—l)a + (r+n)a, —Zan—i—a )t””
2

=i

Then we can make equations from that:
1 , 1 1
T(T_1)+T_Z a,=0=|(r -1 aoz():>r::|:§smcea07é0
1 , 1
(1"4—1)7"~|-(r~|—1)—[—l ag=0= | (r+1) 1 a; =0
5 1
(r+n) 1 a, +a, o=0vn>2

Now we can solve this recurrence:
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1
take r = —
2

3\* 1
5 _L_l 01=0=>CL1:0

1 21 Gy
<(§+n) —Z)an+an2 = (n+n?)a, = —a,_, =>an=—n(n”—+21)

a1:0:>a3:a5:"'=0

N ) i ) N (‘1)na0
92 = 3><2’a4_5><4><3><2:>a2"_ 2n +1)!

m\»—-

= = is a solution

(2n +1)! Vi Vi

1
Take r = ——
2

1 |
—5+1) =5 ]u=0=0=0

how unhelpful

i ) ay g _ %0 sin(t)  sin(t) .

Assume a5 =0

L S| . —a,_,
—4+n| —=]a,=—a a, = ——
2 4 )" n2 " nn-—1)

] a1 (=1)"ag

_ a, = S ay, =
2T T 2 ™M T Ix2x3xd T (2n)
__ M _ (=1)"ay
3 3x2 LT (op 4 1)
1 (o= (=1)"aqg — (—1)"ay
=t 2 2n $2n+l
v (7;) e U )
_. cos(t) . sin(t)
° Vi b Vi

Theorem
Let tp(t) = po + pit + -+ and t2q(t) = qo + ¢t + -

Then, the indicial equation is 7(r — 1) + py7 + g, = 0. Let 7, 7, be roots with vy > ry if r{, 75 € R.

1 Ifr,ry, e R
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o0
Yy, =t" Z a,t" ag # 0
n=0

Yo = cyy (t) In(t) + ¢72 Z bnt™ by # 0
n=0

Ifry —ry ¢ Z,thenc=0
If ry =ry thenc=1.
Ifr,—ry,€ZthenceR
2. Ifry =7y =a+bi,b#0:

yp (t) = t* cos(bln(t)) Z a,t" ag # 0
n=0

Yo (t) = t*sin(bln(t)) i b,t" by # 0
n=0

Proofish
Yy +pt)y +q(t)y =0
tp(t) = po + Pt + -, t2q(t) = qo + got + -
o0 o0 o0
y= at"™y =) (r+n)at Ty =3 (r+n)(r+n—1)a,tm
n=0 n=0 n=0
= t2y" + t(tp(t))y +2q(t)y = _(r+n)(r +n—1)a,t™" + (py + pyt +...) Y (r +n)a, t™*"
n=0 n=0

(o ]
+(q0 + 1t + ) ZantrJrn =0
n=0

Form equations:
(r(r = 1) + por + dg)ag = 0 = r(r — 1) + pyr + gy = 0

Coefficent of t"™+7:

n

(r+n)(r+n—1a, + Zpk(r +n—k)a, Z Tk
k=0 k=0

=({(r+n)(r+n—1)+py(r+n)+gqya,+--=0
Example
Write down the form of a FSOS at ¢; = 0

1. t2y” + (sint +t)y’ +y=0,t >0
2.2y (et = 1)y —(t+1y=0,t>0
3. t%y" + (Bt+t)y +y=0
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Solution
1.

The indicial equation:

V3.

1
r(r—1)+2r+1:0:>r:—§j:71

Form of the solutions:

o (VB S
Yy, =t 2 cos (7 In(t) 7;;)ant" ay #0

(VB ™
Yy =1t 2 cos (TIH(t)> ;bnt by #0

Indicial equation:
rr—1)4+r—1=0=7r2-1=0=7r=+1

Form of the equation:
ylthant" ag # 0
n=0

1 o0
Yo = cy; In(t) + n nz:;) bt by # 0

Since 1 — (—1) = 2 is a positive integer, ¢ may be any real value.

3.

Indicial equation:

r(r—1)4+3r+1=0=(r+1)°=0—-r=—1,-1
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Form of the equation

o0

1
ylzzzantn ag # 0

n=0
[eS)

1
Yo =y In(t) + n b, t" by # 0
-0

n

Chapter 10: Laplace Transform
We can turn multiplication into addition:

ab - In(a) + In(b)
This can be useful in calculus for differentiation:
n((z—1)°@@+1)*(z-2)") =3In(z — 1) + 4In(z + 1) + 7In(z — 1)

If we could turn differentiation into multiplication, that would be useful:

Laplace Transform

v +3y +Ty=0 ———— 2y + 3ty + Ty =1

Laplace Transform
The Laplace Tranform, £, assigns to any function f(¢) defined for all ¢ > 0 a new function F(s)

F(s) = £{fO}) = [ st f()dt
0

as long as the integral converges. £ is linear by properties of integrals.

Example

Find the Laplace of the following:
1. et

2. e cos(bt)

3. e sin(bt)

Solution
1.
L{e™}(s) = / e Stettdt = / ele=s)tdt
0 0
limT_,oofooodtzoo ifa=s
- limg_, eac:;l =00 ifa#s
00 ifa>s
N ﬁ ifs>a
2.
3.
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Assume b # 0

e cos(bt) + ie? sin(bt) = ele+bi)t

. 0 ) Diverges ifa>s
L'{e(a-i-bz)t}(s) — / elatbi—s)t 4y — ) .
0 yp— ifs>a
- —a+bi
= £ e(a+bz)t 3) = §5—a
{ 1) (s — a)2 + b2
Re s—a
= L{e* cos(bt)}(s) = —————
(et eoso} ) = "
= L{e* sin(bt) }(s) = b
(s —a)® + b2

Table of Laplaces
j(t) = LI (s)] | I(s) = L(t)]

at 1
e, aeR o

What can go wrong with the Laplace
1. f could have too many points of discontinuity
2. fis too large compared to et For example, f(t) = e!* > e5tVs = fooo et*~stdt = oo

Piecewise continuous

We say f : [0,00) — R is piecewise continuous if for every r > 0 there are only finitely many points
of discontinuity for f(t) € [0, 7]

Exponential Order

We say f : [0,00) — R is of exponential order if V¢ > 0,3c, M € R s.t. |f(t)] < Me. We say [ is
of exponential order not exceeding c.

Examples
1. [sin(t)| < 1 - sin(¢) is of exponential runtime not exceeding ®.

2. t is not of exponential runtime not exceeding ® because |t| < Me® does not hold for any M.
However, |t| < Me°t holds for every ¢ > 0. M will depend on c.

t
For £ = 1 there is some s > 0 such that if ¢ > s then ‘E_O‘ <1
e
t
= —<1forallt>s
€Ct

By the EVT, _L; attains a max m over [0, é]. Thus,

L <mforallt e 0,4].

— | <max(1,m) forallt >0
eC

|t| < max(1,m)e

N —— —
m
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Theorem on the existence of the Laplace

Suppose f : [0,00] — R is piecewise continuous and of exponential order. Then its Laplace trans-
formation £{f(t)}(s) exists for sufficiently large s. Specifically, if f is piecewise continuous, and
|f(t)| < Me*t for constants ¢, M, and for all t > 0, then £{f(t)}(s) exists for all s > c.

Equality of Laplaces

Suppose f(t) and g(t) are two functions continuous over [0, c0), both of which are of exponential
order. Assume there is a real number A for which £{f(t)}(s) = £{g(t)}(s) for all s > A. Then
f(t)=g(t) forall t € [0, 00).

Essentially, £{f(t)}(s) = £{g(t)}(s) <> f(t) = g(t) for s > A, t > 0
Examples

Example
Solve y' — 2y = €%, y(0) = 3:

Solution
We will evaluate the Laplace of y and then take the inverse Laplace.

Suppose L{y(t)}(s) = Y (s).
Ly (1)} (s) —2Y (s) = £{e'}

Ly (Hs) ¥ (5) = —

t=0

Ly (1)}(s) = /Oo esty/ (t)dt = €_Sty(t)|t=°° B /oo SO (—se)at

y(0)=3
1
sY(s) —3—2Y(s) =
s—5
3 1
=Y(s) =
s—2 (s—2)(s—5)
s b
_S—2+S—2+S—5

_ | 8 1 } _§ 2t 1 5t
=yit)=24« {3(8—2)+3<8—5) (t) = —e** 4+ —e
Theorem on the order of a solution

Suppose f : [0,00) — R is of exponential order. Let L[y] = f(¢) be a linear equation with constant
coefficients. Then, every solution to this equation is of exponential order.

Theorem on the Laplace of a derived function

Suppose f : [0,00) — R is n times differentiable, f(™ (t) is piecewise continuous, and of exponen-
tial order not exceeding c. Let F'(s) = £{f(t)(s)}. Then,
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L{F ()} (s) = s"F(s) — 571 £(0) — 8" 2f(0) — - — £1)(0)

Proof
We know

’f(n) (t)| < Mect = _Mect < f(n) < Mect

integration M et  Me® Met  Me°
i _ Me n Ce Sf(n_l)(t)_f(n_l)«))S Ce _ Ce

Therefore, f(»~1 is of exponential order.

(e o)

L{F™(#)}(s) = / et fM(@)dt = estfn=b — / FOY () (—sest)dt
0

— 0— & f(0) + s.£{f™ D (t) }(s)

Finish off the proof by applying the inductive hypothesis.

How to find a particular solution
Suppose we want to find a particular solution for 4™ + a,,y"~V + .- + a,y = f(t),where ay, ...,a
are constants.

Let £{f(¢)}(s) = F(s) and L{y(t)} = Y (s)

v+ a,y ™Y 4t agy = f(1)

n

= SV (5) = ¥ (s) — $7Y(0) — 5772y (0) -~ "D (0)
Fa, (871Y (5) — 57 2y(0) — - — 4 2)0)
ot Y () = F(s)
Set (0) = - = ™ 1(0) = 0
s"Y (s) + a,s" 'Y (s) + -+ a,;Y(s) = F(s)
_ F(s) _ F(s)
Y(s) = s"+a, s+ da, p(s)

characteristic polynomial

Yp — £—1{F(8)}(t)
p(s)

Theorem on derivatives
Suppose f : [0,00) — R is piecewise continuous and of exponential order not exceeding c. Then
its Laplace transform F'(s) is infinitely differentiable and for every positive integer n and every
real number a, we have
1. L{t"f(t)} = (—1)"F™(s), forall s > ¢
2. £{ef(t)} = F(s—a),foralls >a+c

Proof
1.
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F'(s) =

£{e™ f(1)}(s) = /

Examples

Example

o0

F(s) = £{f(0}(s) = [ st f()dt

/Oo —te St f(t)dt = — /oo e Sttf(t)dt = —L{tf(t)}(s)
0 0
= L{t"f(t)}(s) = (1) F")(s)

esteat f(1)dt — / et ()t = C{f()H(s — a) = F(s— a)

1

Find the inverse Laplace of ——

Solution

(s+1)?

SRR

d

s+1

UL NSO N B S » 1 gt
ofte o) =~ e Vo) =~ (77) = e = 4 {(Hl)z}(t) t

Example

Using the Laplace transform, solve the IVP:

Solution
Let Y(s) = £(y(t))(s).

y" +2y" +¢ =0,9(0) = 1,4°(0) = y"(0) = 0

Take the Laplace transform of both sides

s°Y (s) — s%y(0) — sy/(0) — " (0) + 25?Y (s) — 2sy(0) — 2y/(0) + sY(s) —y(0) = 0

/L‘{y//l}

2£{y"} £{y'} <{0}
1

S S

(34252 +5)Y(s)—s2—25s—1=0=Y(s) = E = y(t) = ﬁl{—}(t) =elt =1

Example

Solution

y(t) =1

5
,571
{54 + 1352 4+ 36}
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5 1 1
s2+13s2+36 s2+4 s2+9

) 1 1
£—1 :L'_l £—1
{s4+13s2+36} {82+4}+ {82+9}

1 1
=3 sin(2t) + 3 sin(3t)

Definition of Heaviside

H@)={1 ﬁtzq
0 otherwise

And here is a plot of H(¢):

Example

This can be written as:
f(£) = H(#)sin(t)

You can write down ones that aren't at zeros by shifting the Heaviside function;

ﬂw:{?Mﬂ iii:H@—ngmﬁ

If it only exists in a particular region, you can deal with that by subtracting them:

0 ift<l
1 if1<t<2=H(t—1)—H(t—2)
if2<t

Example
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L{H({t—c)f(t—c)}(s) for c >0
Solution

/ TS H (= ) f(t— o)t = / T S H(E— o) f(t— c)dt

0 c

=" / et f(u)du = e‘sc/ e U f(u)du = e 5 L{f(t)}(s)
0 0

Example
Find the Laplace of f(t)

t2 0<t<?2
f)=<1—-t 2<t<3
1 3<t

Solution
Rewrite with Heaviside functions:
fO)=t*(Ht)—Ht—2))+ (1 —t)(H(t—2)— H(t—3))+ 1(H(t—3))
Recall:
L{H(t —c)j(t —c)}(s) = e L{j(t)}(s)
Rewrite:

f(t) =H(t)ﬁ+H(t—2)(—t2+1—t) +H(Et—3)(—1+t+1)

Ji(t) = ¢
Jot—2)=—t2+1—t=j,(t) = —t*—5t—5
Jast—=3)=t=j3(t) =t +3

2! 2

S{HOPYs) = e L)) = 5 = 5

L{H(t —2)j,(t — 2)}(s) = e 2 6{—#> — 5t — 5}(s) = ¢ ( ______
L{H(t —3)j3(t —3)}(s) = e 3 L{t + 3}(s) = e (% n §)

Therefore, after summing up:

L{f(t)}(s) = 2 e (3 + % + §) + g3 (l + §)

s s2 s

Convolution
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(f % 9)(t) = / f(@)g(t — z)dz
frxg=gxf

Product of Laplaces
L{fYe{g} = £{f > g}

Proofish

Cifrg) = /°° et (f % g) (t)dt

/ / f(x)g(t — z)dzdt
_ / /0 et f(2)g(t — z)dawdt

questlonable / / _stf t — x)dtdﬂ?
0 x
= [ g [Tt maas

0 x

ue / f(x) / e~s(ut) g(u)dtdz
0

T

f@e [ eyl

|
—

0

= /oo f(x)e** L{g}(s)dtdz

/ f(z)e**dtdw

= £{g}(s){f}(s)

1
£—1
{344—232—1-1}

1 1 1 1

Example

Solution

A+2s2+1 (24172 241 211
1
(I_l{ T }(s) = sin(t)

SlIl * SlIl / SlIl SlIl t — 37
0
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Another solution

2 1—-2 2
similarly £1{S+—S} = —tcos(t)
2—s2—1
L1 8—2 = —tcos(t)
(2 +1)
2 1
L ——F7 <5 = —tcos(t)
(s2+1) s°+1

zl{ﬁ} —sin(t) = —tsin(t) = zl{m} = %(Sin(t) — tcos(t))

Chapter 11: Systems of Differential Equations

First-Order System
z,(t), ..., z, (t) are unknown.

dx

dt == fl (t, .Tl, ...,xn)

d
4 % - f2(t, .CEQ, ...,ZEn)

d n
\% = f,(t,xg,...,x,)
We use Z = (21, ...,2,); f = (f1, .., f,), and write % = f(t,) as the compact form. f is called
forcing.

We can write down any differential equation or system as a first-order system by using something
like z; = z,z, = 2, etc.

Example
Convert the system into a first-order system:
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" =x% + 1 +txy
Yy =y'y+yt

Solution

— — /7 _ .
Ty =T,T =T ,T3 =Y, Ty =Y

,

dz
T = T
d
) % zm% + 9 +tri2y
dzs __
T — T4
dr, t'?’
[ Tat = TaTs + 1%z
Linear Systems
.
d
% = ay;(t)zy + a15(t)Ty + -+ ag, (t)z, + f1(1)
dzy

)G = an () + agy()Tg + - + ag, (D), + fo(t)

dx,,

\W = anl(t)xl + anQ(t)x2 + ann(t)xn + fn(t>

This can also be written in matrix form:

. ayq(t) aga(t) - aq,(t) T fi1(t)

d ;1 _ | 421 () aga(t) - ag,(t) T2 I fa(t)
dt a:'n : : :

a’nl(t) anZ(t) a’nn(t) Tn fn(t)

Every first-order linear system can be written as % = A(t)Z + f(t), where A(t) is an n x n matrix

—

with entries as functions of ¢, f(t) is a n x 1 column whose entries are functions of ¢, and Z =

)

Example
Find the forcing and coefficient matrix of:

x} = 2x, — tzy + sin(t)
xh = t2x, + cos(t)z,

Solution
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Example
Write as a first-order system and find the coefficient matrix and the forcing.

2

y” —y” +ty +tan(t)y = €'

Solution

— — o
Ty =Y, Lo =Y, T3 =Y

dz
T = T2
dz
T =T
% = x5 — tzy — tan(t)z; + et
The coeffient matrix:
0 10
At) = 0 01
—tan(t) —t 1
The forcing:
~ 0
fe)=10
et?
Example

Convert the following nth order linear equation into a first-order linear system. Find its coefficient
matrix and forcing.

Y™ +a, )y + -+ ay (t)y = f(2)

Solution
Set:
Ty =Y, Ty = y/7 y Ty = y(n—l)
Then:
( /7
Ty 2
Ty = T3
<
LL',;L71 =T,
T, = —a;(t)r; — ay(t)zy — - — a,(t)z, + f(t)

\

The coefficient matrix is therefore:
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0 1 0 0 0
0 0 1 0 0
0 0 0
A =1 o 0 0 0 1 0
0 0 1
—ay(t) —ay(t) —as(t) —a,_1(t) —An (1)
And the forcing is:
0
J?(t) = 0
f(t)

To solve a nth order linear differential equation
Similar to nth order linear differential equation, to solve % = A(t)Z + f(t)

1. Find the general solution Z to ‘é—f = A(t)Z
2. Find a particular solution z, to 9% = A(t)z + f(t)
3. The general solution to S = A(t)Z + f(t) is Zy + ,

We always assume this process is done over an interval unless specified otherwise.

Existence and Uniqueness theorem for First-Order Differential Equations

% = At)Z + f(t); A(t) isn x n

All entries are continuous over (a,b) and t, € (a, b).

Then, this has a unique solution defined over (a, b):

{fi—f = A7 + f(t)

Example
Find the largest interval that the IVP has a unique solution over:

t2x’ = 2z — (cos(t))y + tan(t)
(sint)y’ = tx 4+ y + cos(t)
z(1)=0

y(1)=0

Solution
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We need all entries to be continuous, so
t#O,t;Alm,t#gHw (k,j € Z)

Because t, = 1 is in the interval, and g > 1, we are in the first range between 0 and g Therefore,
(0,%) is the largest interval.

Dimension of First-order Homogenous Linear System

Consider the first-order n-dimensional system % = A(t)Z. If all entries of A(t) are continuous

over (a, b), then the solution set, defined over (a,b), is an n-dimensional vector space.
Proof

Proof of subspace

The solution set is a subset of (C(a,b))". Then apply the subspace criterion.

Proof of subspace, alternative

4z
L(Z) = & A(t)Z is linear
dt
Thus, its kernel is a subspace.
Proof of Basis
Fix t, € (a,b)
o [Emoams
3 a solution N; to < ° _ forj=1,...,n

We will show N, ..., N, form a basis for the solution set.

Linear Independence

Suppose ¢, ...,c,, € R satisfy ¢, N, (t) + - +¢c,N, (t) =0 for all t € (a,b). Substitute ¢t = t, to ob-
tain ¢, &, + - + ¢, €, = 0. By linear independence, ¢, = --- = ¢,, = 0, which shows that N, ..., N,,
is linear independent.

Spanning
Suppose ¥(t) is a solution defined over (a,b) to % = A(t)Z.
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y(t) satisfies:

f(to) = ?j(to)

Assume ;Zj(toz = (yy,-..,¥,,). Since the solution set is a vector space, y; N, (t) + - + y,, N, (t) is a
solution to i—f = A(t)Z.

{%:A@f

?/(to) = (Ypyemn yn) =y + -+ y,e, = ?Jlﬁ{(to) +t ynm(to)

Therefore, y, N, (t) + - + y,, N, (t) satisifies Z(t,) = 7(t, ). Because () could be any solution, and
this can represent any of those solutions, this set spans the solution set.

Wronskian
The Wronskian of n functions is defined and denoted by:

W [B1(8), s b (8)] = det(8,(8) - 6,(1))

Wronskian shows when a solution works
If W[$1 (t), ..., $n(t)] |t=t = 0, then ¢, (t), ..., , (t) form a basis for the solution set of % = A(t)Z.

Proof

dz )
d—f — A(t)f  witht e (a,b),Aisnxn

How do we know solutions 51 (t), ..., &, (t) form a basis for the solution set of % = A(t)Z? Fix t, €
(a,b). We know every solution to % = A(t)Z is a solution to some IVP:

dz —
{ﬁzA@m
f(to) = ¢
In other words, we need to ensure that every solution to the IVP is a linear combination of
G1(t), s D (1)
By linearity V¢, ...,c, € R,¢;¢,(t) + - + ¢, ¢, (t) satisfies % = A(t)Z.

We need to make sure for every ¢, € R™, 3c,, ..., c,, € R such that ¢, ¢, (t,) + - + ¢, 6, (ty) = G-

This can also be written with matrices:

This matrix equation has a solution ¢, ..., c,, for every ¢, € R" iff
det (61 (ty) = Galto)) # 0

Relation to other Wronskian
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Y™ +a, Oy + 4 ay )y =0

i) - Y,

Y/ (t ... Y’ (¢t
Y, ..., Y, are solutions = W[Y3,...., Y, ](t) = det (1) _ (t)

n—1 n—
Y1( )(t) e YD (g

But also, this equation becomes

,

a2
3 T =
=z, — e —a ()
Yk
aw=|
vy
Then:
Y (t) Y, ()
W@y, .., $,| = det Y Ya® WY, ..., Y,

n—1 n—
Yl( )(t) YD)

n

Wronskian is never zero if it isn’t zero at a point

Suppose all entries of the coefficient matrix of a first-order n-dimensional homogenous linear
system are continuous over (a, b). Suppose the Wronskian of n solutions to this system is zero at
one point ¢, € (a, b), then the Wronskian must be zero everywhere on (a, b)

WI..](ty) # 0= Vi € (a,b), W[..](t) # 0

Proof
Since det(¢_§1 (tg) - ) + 0, by the proof above, ¢, (), ..., ¢, (t) form a basis.

#Oforallte(a b).

—

We will show det (¢1( () )
On the contrary, assume det ((;_5' (t1) 1)) = 0 for some t; € (a,b).
Gnlt

By that assumption ¢, (t,), ..., ¢, (t,) are linearly dependent. This then means ¢, ¢, (t,) + - +
¢, ¢, (t;) = 0 for some c,, ...,c, € R not all zero.

Then, $(t) = ¢, , (t) + - + ¢, ¢, (t) satisfies the IVP:
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Since 0 is a solution to the IVP, by the existence and uniqueness theorem, 3(t) = ¢, ¢, (t) + - +
¢, 6, (t) =0 forall t € (a,b).

Therefore:

for all t € (a,b), a contradiction.

Abel’'s Theorem
If W is the Wronskian of n solutions to % = A(t)Z, then % = tr(A(t))W.

Fundamental Matrix

(61(t) - ¢.())

Solutions from Fundamental Matrix
Assuming 51 (t),-, $n (t) form a FSOS, every solution is of the form:

€1
0161(t) + =+ 0B (0) = (3(8) = 3,(0) ( ; )

c

X n
Fundamental Matrix

some vector in R™

Example
Suppose

s =("1).m0 = (1)

are two solutions to a first-order 2-dimensional linear system % = A(t)Z.

1. Find the coefficient matrix A(t).
2. Find the general solution.
3. Find a fundamental matrix.

Solution
1.

(3)-0()
(§)=10()

Therefore, by the definition of matrix multiplication:
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(3 -mo ('3

1yt 1 -
t 1 1+ 2 2\t 1+

N ——
1

Then,
2t 1 1 =t
At) =
(®) (1 0) (—t 1+t2)
Note that all entries of A(t) are continuous over R.

W[(lttz)(m —14+2 2 =140

By a theorem, the general solution is
1+ t2 t
(o] ( 1 ) +c, (1)

2.

3.

A fundamental matrix is

1+t2 ¢t
t 1

Chapter 12: Linear Systems with Constant Coefficients

Homogenous Linear Systems with Constant Coefficients

dz R
a_g, tA t2A% {3 A3 tnAn Vi e R
=l g €
d 2tA% 31243 nt" A"
a Ay U e T
¢ =0 Ad S g e T
0 tnflAn o0 tnflAn o0 tnAn-H 0 tnAn
= =Y T T =AY Ty = e
—~ n! — (n—1)! o n! o n!
We can form solutions here:
i(em) — AetA
dt

%(jth column of ') = A(jth column of e'*)
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Therefore, the columns of et4 are solutions to 4Z = AZ.
dt

The Wronskian of these solutions is det(e’*). At t = 0, det(e®*) = det(I) = 1 # 0. Therefore, '
is a fundamental matrix.

-

Then, this makes Z(t) = e*4¢, ¢ € R” the solution.
How do we evaluate et4?
Set D =&,

D[t] = Ae'4, D?[e!] = A%e'4, ., DF [e4] = Aket4d
For every polynomial p(z) we have P(D)[e!4] = p(A)e™.

If p(A) =0, then p(D)[e] = 0. Therefore, entries of e'4 satisfy the differential equation
P(D)[y] = 0.

In order to find these entries, we need initial values.
If the degree of p is m, we need m initial values: 4(0), 7/ (0), ..., 5™ 1(0).
These will then be:

d dm—l

A . A _ A _ -1
et |t:O = I, &(et >|t:0 = A, ceey W(et )|t:0 =A™

Suppose Ny(t), ..., N,,_;(t) form the NFSoS for p(D)[y] = 0 at ¢, = 0.
Then, et = N, (t)I + N, (t)A+ -+ N,,_;(t)A™L,

Example

Compute et where A = (3 2

) 3). Use this to solve Z = AZ, %(0) = (1)

2

Solution
The characteristic polynomial of A is:

p(z)zdet(3;z 33) =(3—2)°—4

By the Cayley-Hamilton theorem, p(A) = 0, so we can use the process outlined above.

Find the NFSoS for p(D)[y] = 0:

(3—2)%—4=0=z€{1,5} =y =c e’ + c e

5 —
y(0)=y0:>{®1+®2=y0 N @1:%
y/(o):yl C1+5®2=y1 szw

4
Yo — Y1\ 4 (yl—yo> 5¢
= = _ = - -
Y ( 1 e + 1 e

5ot — bt &5t et
=% T + Y 4
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e general solution is # = ¢!4&. The solution to the given IVP satisfies z(0) =

G0
i— tA(z):'“

different way to find ¢4
e!4 is a fundamental matrix.

Assume ®(¢) is also a fundamental matrix.

Then, the first column of ®(t) = e*4¢; and the second column of ®(t) = e*4c,

®(t) = eAC,C = (€], ..., E,)
B(0) = C = ®(t) = e 4D(0) = ' = &(¢)(®(0)) "

Example
Solve the IVP:

' =2x+y
Yy =x+2y
z(0) =
y(0) = —

~—

Solution

characteristic polynomial
A:<2 1) = p(z) = (2—2)%—1

12
p(2) =0= 2 € {1,3} = p(D)[y] = 0= y = ey + oy

Find the NFSoS at ¢, = 0:

3y, —
y(0) =y :>{®1+®2:?J0 N = g
y'(0) =y ¢, +3¢c, =y, c, = Lt

3y0 U1 ] — Yo 3t 3et _ e3t e3t et
=Yy = =
Yy 5 +2 2 = Y% 5 +uy 9
[ S — N — —
Ny N,
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A _ <3et_63t)I+ (eat_et>A
2 2

The solution is Z(t) = etA( 1 )
Example

Evaluate et where

12
A=101
00
Solution

The characteristic polynomial is p(z) = det(A — zI) = (1 — 2)*(2 — 2).

The general solution to P(D)[y] = 0is y = ¢, e’ + cytel + c3e?h.

y(0) = yq ¢, te3 =1 c, =2y — Y
y(0)=y, =<¢tC+2c3=y; =
y”"(0) =y

Cy = 3Y1 — 2Yo — Y2
¢ + 2¢; +4c3 =y,

€3 =Y — 2y; + Yo
=y =(2y; —yy)e' + By — 2yo — yo)te’ + (yo — 2y, + yo)e*

=y = yo(—2te’ + ) + y, (2" + 3te’ — 2e?*) + y,(—et — te! + e?t)
NO Nl N3
Example

dz _ —
d—f = A%
z(0) = 7
Solution

The general solution to £ = AZ is Z = e'4¢, where € € R.

to = #(0) = "¢ =¢

Example

Prove if AB = BA, then eeB = ¢A+B

Scratch
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etAetB — ot(A+B)

_ etdetB=T.1=1
@i = ’{et(A-i-B) -7

i(et(A+B)> — (A + B)et(A+B)
dt
%(etAetB) = AetAetB 4 etABetB

_ (AetA + etAB)etB

So, for (A + B)e! A8 = (Ae!4 + ¢! B)et®, !4 B = Be'/.

@t:o‘{etAB:B
" | BetA =B

d, 4 dz

— B) = Ae'*B = — = A%

" (e ) e = " z
d dz
—(BetA) = BAet4 = ABetA = & AZ
dt dt

Solution
Consider the system 42 = A7 called x.(

d
m = BAet4 = A(BetA) = columns of Be'” satisfy *
e
d  ia tA tA :
&(e B) = A(e B) = columns of e B satisfy =

etAB‘t_0 =e"B=IB=RB
Be““t_0 =B’ =BI =B
= ¢ B| = Be™|
t=0 t=0
Thus, columns of 4 B and Be!4 satisfy the same IVP. Thus, ¢4 B = Be!4 by the existence and
uniqueness theorem. Call that result 1.
Consider the system i—f = (A + B)Z, called x x.

d b
a(67:AetB) — AetAetB 4 (tABetB "L pgtAtB | BetAgtB _ (A+ B)(etetB)

%(et(A—i-B)) — (A + B)et(A—i-B)

Thus, columns of et“4etB and e!(41B) satisfy .
etAetB‘ — 60A€0B =J.-I=1

et(A+B)| — O(A+B) _

106



Thus, by the existence and uniqueness theorem, et4etB = t(A+B5)

Eigenpair Method
We know that e is a solution to 3/ = ay.

This raises the question, for % = AZ, is & = e'*¥ a solution?
aet®y = Aet®y
a¥ = AU = (a, ) is an eigenpair of A

Suppose (A, 9;), ..., (A, ,,,) are eigenpairs of A such that ¥,,v,, are linearly independent. Then
eMiy, ..., ert y are linearly independent over C (complex) solutions of % = AZ.

Reason:

Suppose Z;Zl c;e’i's; = Oforallt € Rand somec,, ...,c,, € C. Z;.”:l c,U;=0=¢, =..=¢, =
0

Theorem for eigenpair method

Z(t) = My
is a solution to % = AZ iff (), ) is an eigenpair for A.

Example
Solve by eigenpair method:

dﬂ?_<12>q
a  \43)”

Solution
Characteristic polynomial of A

det<1—z 2 ):Z2_4Z+3_8:(z+1)(z—5):A1=—1,A2=5

4 33—z
_ 2 2 1) _ =z
For A\ = 1=>(44><_1)—0

. —4 2 1y _ =
For)\—5:>(4 _2)<2>—0

(—1, (_11>) A <5, (;)) are eigenpairs corresponding to linearly independent eigenvectors.

Therefore, the general solution is

Example
Solve using the eigenpair method.

d:?_(l 2>ﬁ
a  \—-13)"
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Solution

p(2)=(1—2)3—2)+2=22—42+5=(2—2°+1—>2=2+1.

_ . —1—3 2 1—4\ _ (0
forz=2+1: ( 1 1—i>< ) >_<0)

(2 +1, (1 I 7’)) is an eigenpair
= (1) = e (177 = e (eos) +sin(e)) (" T )

1
_ 2 (cos(t) + sin(t) + i(—cos(t) + sin(t)))
cos(t) + isin(t)

Two solutions to 4% = A(_ll ;2»,> are:

(e%(cos(t) + sin(t))) (e”(sin(t) — cos(t)))

e?t cos(t) e?t sin(t)
The general solution is:

‘ (e (cos(t) + sin(t))) te, (e (sin(t) — cos(t)))

€2t cos(t) €%t sin(t)
Example
Find et for every A € M,(R). Use that to find the general solution ‘é—f = AZ

Solution
Let

Then:
p(z)=(a—2)(d—2)—bc=2%—(a+d)z+ad —bc=22—(trA)z+det A= (z— \;) (2 — \y)
Case i A} # XAy, A, A5 €R

The general solution to P(D)[y] = 0 is y = ¢;e*? + cyeP2?

Cc, = Y1—A2%0

€ +C =Y 10T A
)\1([)1 + AQCQ == yl Co = >\1y0*y1
2 Al_)‘Z

Therefore:
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y = c,eMt + cyet2t

Yy~ A2Yo oMt

+ A% — Y1 oot
AL = Ag AL = Ag

)\leklt _ )\26>‘1t e)\lt _ e)\gt
= Yo Ny + 4 DY
)\lez\lt _ )\26)\115 I+ 6/\11‘, _ 6/\275 A

)‘1 - /\2 >‘1 - )‘2

Alternatively, we can use the eigenpair method.

Therefore:

(A—XI)(A—XI)=0= anonzero column of A — A, is an eigenvector for \;
Use this to find a fundamental matrix, X (¢), and then use e*4 = X (¢)[X(0)] "
Case Il Ay = Ay = A, A, €R

NFSOS:
y = c ettt 4 g tetzt
{@1 =Y {“31 =Y
=
A€y + ¢y =y Cy =Y — MY
y = yoeMt + (y; — Ay )teM?
= Yo (e)\lt . )\lte)‘lt) + ylte)\lt

Therefore:

et = (Mt — AjteMi)I + (teMt) A

If AT = A0 = €40 = (eM? — A\ jteM?)T + (teM?)AT = eMr?

A second linearly independent solution can be found by picking @ that is not a multiple of v:
et A = el — A\ teMtd + teMt Ad

(

Alternatively,

2(A— X 1)° N
2!

all zero by the Cayley-Hamilton theorem

A
eld = etMtA—tA — (e 0 ) I+ (t(A—X\1I))+

— otha((]
0 eth =e™M((1—Mt)] +tA)

Case IIL: A\, = Ay, A\, A\, € C

The solution is online.
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Example
Suppose

form a FSOS for ' = AZ.

1. Find A.
2. Find et4

Solution
Substitute:

Second method:

et G),and e?t @) are solutions = (1, G)), <2, (;))
IR

2. Find et4

Thus,

Variation of Parameters
We need to find Yp.

Suppose ®(t) is a fundamental matrix for 4 = Az
Objective: find a particular solution for % — AZ + f(t)
For example, we did the following:
Y +y=0Ay" +y=t>tan(t) = y, = u(t) cos(t) + uy(t) sin(t)

Now, we will do something similar:
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Let 7, = ®(t)u(t)
Substitute into the nonhomogenous system:

®(D)i(t) + B(1)a (1) = AD(2)ii(t) + f(¢)

dz
dt

Since every column of ®(¢) is a solution to ' = AZ, ' (t) = AD(t).
AD(t)ii(t) + (1)U (1) = AD(8)d(t) + F(2)
S(t)i' (1) = f(t) = @' (t) = (B(t) " f(¢)

We know we need

Example
Solve:

dz 4 5\, (4etcos(t)) .

= 0) =0

at <2—2> ( o ) E0)
Solution

A et cos(t) + 3et sin(t) 5et sin(t)
(A =
—2et sin(t) et cos(t) — 3et sin(t)

Then
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Z(t)

t S
0+ 6tA/ e—sA (46 COS(3>)ds
0 0

o /Ot - (cos(—s) + 3sin(—s) 5sin(—s) ) (Mcos(s>)ds

—2sin(—s) cos(—s) — 3sin(—s)

_ 4tA ¢ (cos?(s) — 3sin(s) cos(s) .
y /0 ( 2sin(s) cos(s) )d

Laplace Transform
Define:

Then:

Example
Solve using the method of Laplace transforms:

5= e () 50- ()
Solution
Let X(s) = £{Z}(s).

Move X (s) terms to one side:
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Left-multiply the inverse:
—1 1
—1 —4 L
X(s) = (% ) s—1
() ( 1 s—1 ( 1 )
1
__ (S -1 4 ) P

(s—1)>—4\ 1 s—1 1

5
53) (o7 1)
1 s—1
3D T oa)s+D)

The inverse Laplace can be found via partial fractions, and results in:

5(ett—1)
B = X} = |

5—2e2t45et
8et

Chapter 13: Qualitative Theory of Differential Equations

The main focus is on autonomous systems:

Definition of Autonomous System:
Any system of this form is autonomous:

dz -
E:f(f)

Stationary
A solution to a system % = f(a‘c’) is called stationary, equilibrium, fixed point or a critical point if
it is a constant function.

Semistationary
A solution to a system % = f(f) is called semistationary if all components of Z(t), except for one,
are constant.

Example

T =(z-1)y
dy

a — Y

Solution
Some solutions for this are
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y=¢e’ lz=0

It also seems to be that you can’t cross the same value from different starting solutions.

' =y2—1
Yy =azy’+a

Example

Solution
Find some stationary solutions:

0=y?—1=>y=+1
O=zy’+z=>0=z(y>°+1)=0=z

To find the semistationary solutions, use one of those constraints, then solve.

Example

¥=x—zy—x+y
y =y(@?—2z+3)

Solution

{0=(:c—y)(a:—1) :>{0=m(x—1):>{x6{1,0}

0=y(x?2 —2z+3) y=0 y=0
The stationary solutions are (0,0), (1,0)

Semistationary
We need a constant z that makes z’ = (z — y)(x — 1) zero or a constant y that makes y(z? — 2z —
3) zero. Therefore, z =1 or y = 0.

r=1=y =2y=y=ce*,ceR= (1,ce*)

’ 2 ]‘
r=x*—-x==|——0
1+ cet

Questions
There are questions one would like to ask:

Are there stationary solutions?

Are there semistationary solutions?

What happens to a solution if the initial value is slightly modified?
What happens to a solution over the long run as ¢ gets larger?
Are there periodic solutions?

arwON =

Orbit Equation
The orbit equation of the system
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Example
T’ =2y
y =2z — 4x3
2y'y = (2z — 42®)2’
2y'y + (423 + 2z)z’ =0
2ydy + (423 + 2z)dz =0
0 3}
—(42® —22) =0= —(2
gy 4" — %) 50 %)
pp =42° =20 = ¢ =zt — 2 + f(y)
0, =2y=p=19"+g()
o= — 2 +y? ¢

srt— by =c

Stability
A solution 3, (t) to #’ = f(Z) is stable if

[8(0) = 20(0)] <0 = [&(t) =@ ()| <& Vt,ve>0,36>0

-

For every solution (t) to 2’ = f(Z) and every future ¢t. We assume all solutions are defined over
the largest possible open interval.

Notes

All examples today will solutions to be a linear system with constant coefficients:
dz
— = A%
dt

Vibe based definition:

©®o(t), a solution to % = f(2), is called stable if every solution that starts near @ (t) stays near
©o(t) forever.

Example
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Show whether the 0 solution to ‘é—f = AZ is stable.

Solution
The general solution is

p(t) = cre G) +cpe™ (;)

o G) +c, (;) — 6” <= |lcpe? G) + cyet (;) —

Our objective is to find § in terms of ¢.

c,+cC
@1(})“2(;)”@:‘(1 2

¢y + 2¢,
lc; + e <6 N ley| = 12(cy + ) — (€1 + 2¢4)| < 2[c; + 5] + [ + 2¢5] < 30
ey +2¢5] <0 lea| = [(e + 2€5) — (€1 + ¢3)| < fey + 2¢,] + [€g + €3] <26

1 -
(1) e

Scratch

6<s

Ve > 0,30 >0

)H <5=>\/(@1+®2)2+(a:1+2®2)2<5

(3)] < GHW(VE) + 21)(v5) = (3v2+2v5)s < &

_ 1 (1 _
C1te 2t<1)'*®2e t<2)H < leyfe”™ 2

Therefore, we will select

3

f=—
3v2+2V5

Actual Solution
Lete > 0.Setd§ = ﬁ Note that the general solution is

T(t) = cpe 2 (}) + cqet <;>

“31(}) +C2(;>H <= \/<®1 +5)" + (01 +2065)° <= oy + €5 <IN Je; +20 <&

|2(0) —0|| <6 =

= |eq| = [2(cq +¢3) — (€1 +2¢5)| < 2[e; +€5f + [eg + 265] < 30
Ieo| = |eg +2¢5 — (€1 + )| < ey + 2¢5] + [e; + o <26

.2t 1
1 1+ coet(1,2)

If t > 0, then |Z(t) — 0| =
()] +tesle| (3)] < Go102(v2) + 2010 (¥5)
16¢

60 + 100 = 166 = —
< + 100<5

—

< Jegle?

Thus, 0 is a stable solution.

Example

116



< )
1 ].

Solution

L 1 _t (-2
The general solution is Z(t) = cle2t<1> + cqe t( ) )

We claim 0 is unstable. On the contrary, assume 0 is stable. Set £ = 1 in the definition of stability:

afl) (D)o

Hg(}) + (0)(—12) H _ g\/i <.

Thus, we must have ||gthG) H <lforallt>0

ov?2 0vV2
= iezt < 1= lim ie% < 1= 0o <1 a contradiction
2 t—soco 2

36 >0

cre?t + chet (12) H <1

I
o

Set Cl =

N>

7®2

Example

Show whether the 0 solution to 92 = A7 is stable.

o (1—2t ¢
“w_cx-At)+%(%+1>
®1<(1))+c2<(1))—6”<5=> cl(l:4ft)+®2<2tz_l>H<a

We claim that 0 is unstable. On the contrary, assume 0 is stable.

12t t
(") o)<

Solution

Ve > 036 >0

Let € = 1 in the definition of a stable solution:

(1) +er(?) 5] <=
HORCIORL

36 >0

Choose ¢; = g, cy, =0

4]
=—-<94
2<

Thus Vt > 0:

01— 0 4]
H_<1 2t) H <l= —\/(1 —2)° + 1612 < 1= V1612 < 1 = 26[t| < 1= lim 20]t| < 1 = 0o < 1 a contradiction
2\ —4t 2 2 t—00
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Example

Solution
. . —i 2t) — sin(2¢
Z(t) = ezzt<_Z > = i cos(2t) .Sl.n( )
1 — cos(2t) — isin(2t)
. sin(2t) cos(2t)
~x(t) =
() = e (cos(Zt)) o <— sin(2t)
Scratch
Cl((l)) +<D2((1))H <d=4/ef +¢3<d= o] <O, ley <6
sin(2t) cos(2t)
N = < 26
. (COS(%)) e (—Sin(%) il
Solution

We will show that 0 is stable. Let e > 0 and set § = £

If
sin(0) cos(0) € 0 Cy c . . .
< -= RN 2 2 - ° & €
Cl(COS(O)) +®2<—sin(0) -2 ‘ (c1)+<0> ‘<2 C1+®2<2 |tD1|<2,\<1:2|<2
Therefore,

+ |es]

sin(2t) cos(2t)
“1 (cos(2t)> ez (— sin(2t)> || < el

Thus, 0 is stable.

cos(2t) _€ N € _.
—sin(2t) 2 2

sin(2t)
cos(2t)
Asymptotically stable
A solution p((t) is asymptotically stable if it is stable and every ¢ close to @, converges to p:

36 > 0]3(0) — ()(0)]| < 0 = §(t) = @, (t) as t gets as large as possible

Vibe-based Stability Examples
If you have the system 7’ = AZ, what is the stability of (?

Examples of Z(t):
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€20, + ¢c4e3', — unstable

¢, €20, + cye 3!, — unstable
¢ e %) + coe 3, — asymptotically stable

€17y + ¢4¥y — stable

€Uy + ¢4(2t + 5)¥, — unstable

c;e% cos(t)v; + cye?t sin(t)v, — unstable
¢, e ') + coe (2t + 3)U; — asymptotically stable
ce 2t cos(3t)v; + cye 2t sin(3t) — asymptotically stable

¢, cos(3t)v; + ¢, sin(3t)v, — stable

A = a+ bi = e cos(bt) + e sin(bt)

Results in a stable solution if a < 0
If you have repeated roots of ® with linearly independent eigenvectors:
f(t) = Clrl_jl + 0262 — Stable

There are different types of stability. ¢, cos(3t)7; + ¢, sin(3t)d, is stable by being bounded, but it
does not reach zero. The other example is for example, ¢, e 2! cos(3t)9; + c,e 2! sin(3t) where it
goes to zero. This is called asymptotically stable.

Stability of the solutions to % = AZ
Consider the system % = AZ.

¢ All solutions are asymptotically stable if all eigenvalues of A have negative real parts.

¢ All solutions are unstable if at least one eigenvalue of A has a positive real part.

e Suppose all eigenvalues of A have nonpositive real parts. Let A\, ..., A, with k£ > 1, be all distinct
eigenvalues of A whose real parts are zero. Call the multiplicity of A; as a root of the character-
istic polynomial of A m.

» If A has m; linearly independent eigenvectors corresponding to \; for every j, then every so-
lution to the system is stable but not asymptotically stable.
» Otherwise, every solution is unstable.

Example
Take the following eigenvectors:

0,0,4,4,—i,—i,—3, —4, —4,—4

For stability, you need 9, 9, as linearly independent eigenvectors of 0, and w;, w, linearly inde-
pendent eigenvectors of ¢ and w;, w, linearly independent for —i.

Theorem on Stability in nonlinear systems near stationary solutions

Suppose Z is a stationary solution to the system 2z’ = f(z). Let A be the Jacobian matrix at z,,.

o If all eigenvalues of A have negative real parts, then Z, is an asymptotically stable solution to
the system.
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o If at least one eigenvalue of A has a positive real part, then Z,is an unstable solution to the
system.
e If neither is true, then Z, could be stable, unstable or asymptotically stable.

Getting the vibe of the answer
Approximate the system with a linear system and use the stability of the linear system to under-
stand the stability of solutions to a nonlinear system.

Pick (x4, yp)-
z' = f(z,y) ~ f(zg,y0) + fo(To, Yo) (T — 7o) + fy(x07y0)(y — o)
Y =g(z,y) = 9(xg, Yo) + 9, (T, Yo) (T — z¢) + gy($07y0)(y — o)
If (z4,y,) is a stationary solution, then f(z,,y,) = 9(z,y,) =0
This results in:

' = f,(29,Y0)(x — 2¢) + f,(20,Y0) (¥ — ¥o)
Y = 9,(%0,Yo) (T — o) + 9, (T0, Yo) (Y — Yo)

LetZ=z—z5, =9y —Yo-

4 (3) = (e B (2

A

This is the linearization near the stationary solution (z, y,)-

If you take that approximation resulting in eigenvalues of {—2, —3}, it is asymptotically stable
around the stationary solution.

If you have that approximation resulting in eigenvalues of {2, —3}, it is unstable around the sta-
tionary solution.

If you have zeros, it's unclear.

Example

Solution
Stationary solutions satisfy

1—2zy=0 1—zy=0 1=yt =+l
— - —
z—1y3=0 z =13 x =13 y==l1

The Jacobian matrix is:
( 1 —3y2)
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Evaluate at (1,1):

<_11 _13> =2t dz+d=(2+2)°" = A= (-2,-2)

By a theorem, (i) is an asymptotically stable solution.

Evaluate at (—1,—1):

G _13) 2124 (24125 A=—14+5

Since v/5 —1 > 0, (—1,—1) is an unstable solution.

Example

{i—f = sin(z +v)

Solution
Find stationary solutions:

sin(x +y) =0 sin(z+y) =0 z=0 z=0
{ew_lz() :{ele = sin(y):O:> y=kmkeZ

Jacobian:

(COS(:;Jr y) COS(J; + y))

Plug in stationary solutions:

(cos(kw) cosgkw)

) = p(2) = 22 — cos(km)z — cos(km) = 0

cos(km) + y/cos? (km) + 4 cos(km) #5 if k is even

2 —LEVBi it i i odd

If k is even, then Re<1+2¢g> > 0 and thus (0, k7) is unstable.

If k is odd, then Re(_lgﬁi) = —1 < 0and thus (0, k) is asymptotically stable.

Review

Example of an inverse Laplace
Find the inverse Laplace of ln(%)

Scratch
=2In(s) —In(s* + 1)
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2cos(2t) — 2

£‘1{1n< a ) }(t) =L HIn(s?) —In(s* + 1) }(¢) = —%ﬁ_l{g — } = —%(2 —2cos(t)) = ;

s24+1 s s2+41

Actual solution
We claim the following is piecewise continuous and of exponential order:

) 2cos(t) — 2
i) = =
It is piecewise continuous because the only discontinuity is at ¢t = 0.

2cos(t) —2 . —2sin(t)
— =lim——= =

im =
t—0 t t—0 1
9 t) —2 2—2sin(t)
’&‘ < MVt € (0,1],by EVT since f(t) = { 7 ift#0
0ift=0
If t > 1 then
2cos(t) —2| 4 2cos(t) — 2 ot
| < 7Vt e (0,00), ; <M+4<(M+4)e
By the table:

z{tw}@) = —% (4%}(30 - § B sfi 1

/_% (z{%ﬁ”}(s))ds =/§— sfjlds

ﬁ{m}(s) =2In(s) —In(s* + 1) + ¢;

t
At s +00:0+¢;=0

L'{M}(s) — In(s?) — In(s? 4+ 1)

2 cos(t) — 2 2
£ —COS( ) (s) =In i
t s2+1
Example 8.6

Suppose two different linear homogeneous differential equations with constant coefficients
L,[y] = 0 and L,[y] = 0 have a common nonzero solution y = y(t), defined over R. Prove that the
characteristic polynomials p,(z) and p,(z) of L, and L, have at least one common root.

Suppose the list of all distinct roots to p, (z) is:

215 %, 0y Zm

And the list of all distinct roots to p,(z) is:

Wy, Wy, ..., W,
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Assume, on the contrary, zy 8 and wy s are distinct:

S m
Y= E E cDjktkezjt for some ¢;, € C
k=1 j=1

r l
= Z Zdjktke“’ft for some d;;, € C
k=1 j=1

s m ro
E o:jktkezjt — E E djktkewit =0
k=1 j=1 k=1 j=1

Since 2y, ..., 2y, Wy, ..., wy @re distinet, ¢, = djy, = 05,k =y =0

Chapter 14: Orbits and PHase Plane Portraits
Orbits

dz R
— = f@:z: (a,b) > R"

When drawing a graph of an orbit in the xy-plane, arrows indicate the direction in which ¢ increases.

' = f(wvy)
y =g(z,y)

forms the orbit equation f(z,y)dy — g(x,y)dz = 0.

Define

. d d .
Given a system 5% = f(z,y), F = g(z,y):
An orbit is the curve (z(t),y(t)) on the zy-plane, where (z(t),y(t)) is a solution to the system.

Phase plane portraits are formed by drawing sample orbits in the xy-plane that show the behavior
of all solutions.

Once again, arrows indicate the direction in which each orbit is traversed ¢ gets as large as pos-
sible.

Existence and Uniqueness Theorem for Autonomous Systems

Assume f is C! over an open subset U of R™ containing Zp-
Then, a unique solution is defined over some interval, (t, —¢,t, + €).

Unrelated to that theorem, but if Z(¢) is a solution to % = f(&), then so is Z(t + ¢) for a constant
c € R, as long as both ¢ an t + ¢ are in the domain of Z.

Proof
Let §(t) = Z(t + ¢).
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—

§(t) =& (t+c) = f(@(t+¢) = F5?))

Theorem on Properties of Orbits
Suppose all components of the vector field f(:c) have continuous first partials, then:

1. Two distinct orbits do not intersect.

2. If $(t) is a solution to &£ = f(Z) with f € C?, and &(t,) = @(t, + T) for some t,, T', with T +
0, them ¢ is periodic with period 7.

3. The corresponding solution is periodic if an orbit lies on a closed curve containing no stationary
solution.

Proof
Suppose Z and ¥ are both solutions to % — f(2) and Z(t,) = §(t, ). Consider the IVP:

{f)

1

o

Ny cL|
I
—

ST\

(to) = Z(to)
Z(t) satisfies this IVP by the choice of Z. Z(t) = §(t + t; — t,) satisfies the differential equation.

Further,

z(ty) = Ylto +t1 —to) = Y(t1) = Z(to)

Z is another solution to the IVP. Z = Z = 4(t + t; — t,) = Z(t), as long as ¢ is in the domain of Z,
and t +t; —t, is in the domain of g.

These two solutions may be offset by some time but represent the same order.

' = f(l',y)
y =g(z,y)

[ Ve +wwra= [ ViEria
0 0

Arc Length

f? + g2 # 0 since there is no stationary solution. Therefore,

S
lim V24 g¢?dt = 0
S§— 00 0

Example

de __ 14+x2+92
a —ye Y

dy 1+a2+y?
dy _ y
1 xe

Solution
The orbit equation:
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2 2 2 2
yel+x +y dy+mel+x t¥°de =0

= ydy + zdx =0 = =0=22+y’=c

dt(%(1’2 +y?))
Stationary Solutions
(0,0) is the only stationary solution. This is the solution represented by C' = 0.

If C > 0, the orbit lies on the closed curve 22 + y? = C, which contains no stationary solutions, so
the solution is periodic.

If C =0,then 22 + 42 = 0 = = = y = 0, which is also periodic.
C < 0yields no curve in the reals.

Example

dz

a — Y

d
d::‘,/ =e* y2
Solution

We will show the y-axis is the union of orbits. Since orbits do not intersect if a solution starts with
x> 0,itcannevergettoxz =0orz <0.

Setx =0:

d
d—i/=eO+y2:1+y2ﬁarctan(y)=t+c:y:tan(t+c).

Take a solution to the above:
(0, tan(t))

This is one orbit that covers the entire y-axis (—35 <t < 7).

Example

&=y

% = 21 — 4z3
Solutions

Stationary Solutions:

{y: overR{x:O
=
—2x — 423 =0 y=0

Orbit equation, which is exact:
ydy + (2z + 423)dz = 0

Therefore
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2
%+m2+m4=®

Now, to show periodicity, check that it is a closed curve, forc > 0

2
%+m2+x4=®

=y =+V2c— 222 — 22%
2¢—2z2 —2z* >0
22+z2t—¢c<0
x4+x2—®:(x2—r)(m2—s)
Assume ¢ > 0 :
rs=—c<0
Thusr<0<s=z?>—r>0
(22 —7)(22 —s) <0=> —/s <z < /s

Thus, if ¢ > 0, the orbit lies on a closed curve.

The stationary solution is (0,0). If (0,0) is on the curve, then ¢ = 0. Thus, for every ¢ > 0, the so-
lution is periodic.

If ¢ = 0, then z = y = 0, which is a fixed point, and therefore the solution is periodic.

Phase plane Portraits

Sample orbits of various kinds, along with arrows indicating the behaviors of the solution as ¢
increases.

Example

Z(t) = c;e 3 <_11> + cye3t (?)

A7=0=2=0

Solution

126



101 —— . — ]
L \\\\\\ \\ \:\““"‘n._____.____‘_____'_._.—-:”" . R

_10; T e ——— N \\\

This solution is called a saddle.

Example

Solution
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______________________

10

-10

This solution is called a nodal sink.

Example

Solution

There is a unique stationary solution at the origin.

This solution is a spiral, so it must be one of these:
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It is a source since et — oo as t — oo. Since % o) = —1,and —1 < 0, it is clockwise.
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10+

Solution
dy _ g — ﬂ‘ = —4 < 0 = clockwise
dz del(1,0)

It is a bunch of ellipses.
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10+

Solution
The zero solution (just a bunch of infinitely small dots):
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10

-10 |
1 ! 1 I | ! ! 1 I |

-10 -5 0 5 10

. 1 _+(0
() =c, (0> + cye? (1)
Solution

There are stationary solutions for all  when y = 0. Then, there are vertical orbits along the y-axis.

Example
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Poincare-Bendixon Theorem

Let R be a closed and bounded region of the zy-plane. Suppose f(z,y) and g(z,y) have contin-
uous first partials over an open region containing R. Assume a solution z(¢),y(¢) to a system of
equations:

dz dy

E - f(may)aa = g(xay)

remains in R for all future t. Suppose further that R contains no stationary curve. Then, either the
orbit (z(t),y(t)) is itself a closed curve, or it spirals into a simple closed curve, which is itself an
orbit of a periodic solution. Therefore, any such system has a periodic solution.

If you are within a region and remain in that region, you will eventually have a periodic or stationary
solution.

Example
Prove that the equation has a nontrivial periodic solution:

2z’ + <z2+2z’2—1>z’+z:0
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Solution:
Form a system:

Let

These are C! over R.

Find stationary solutions:

0=2"=y :>{y=0 =z=y=0
0=y =—(22+2y2 -1y —= 0=—x Y

So, when forming a region, we must avoid (0, 0).
Let's assume a disk.

d

a(ﬂvz +y?) = 2z2’ + 2yy’ = 2zy + 2y%(—2? — 2y + 1) — 2yx = 2y*(—2? — 2y> + 1)

If 2% + y% > L then —z? — 2y + 1 < —y2 < 0 = <L (2? +y?) < 0. Therefore, if the disk is of radius
1, pieces will stay within the disk.

Ifa? +y2 < =222 +22 <1=22<1-2> -2 =0<
it cannot enter £

4 (22 + y?), so if the disk is above 1,

Therefore take:

R is closed and bounded, and if (z(0),y(0)) € R then (z(t),y(t)) € R by the previous statements.

According to the Poincare-Bendixon theorem, a nontrivial periodic solution exists.

Example

o' =ax(l—42% —y?) — 2y(1 + o)
v =yl —422 —y?) +2z(1 4+ )

Show that a nontrivial periodic solution exists.

Solution
Let R = {(z,y) e R? |1 <4a? + 42 < 2}
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R is a closed and bounded region.

S (402 4 4) = (822 + 2)(1 — (40 +472))

d

If (z,y) satisfies 1 < 422 + y? < 3 then £

of t.

(42% 4+ y?) <0, thus 42 + ¢ decreases as a function

If (z,y) satisfies 3 < 422 + y? < 1 then %(4932 +y?) > 0, thus 422 + y? increases as a function of
t.

Thus if (z(0), y(0)) € R, then V¢, (z(t), y(t)) € R

Also, there is no stationary point in R (proven in class), and they have continuous first partials. By
the Poincare-Bendixon theorem, a nontrivial periodic solution exists.

Can we find this solution?

We know that it lays on 4z2 + 2 = 1.

z=Yeos(f(t) _ , _ —% sin(f(8)f(£) = —% sin( £(£)) (1 + %cos(f(t))) = {0 = 1+ Leos(f(1))

Therefore f(t) — 2arctan(\/§tan(}1(\/§t+ 2\/501))). Then, solve for the ¢, by plugging it in
again.

Example

' =—y+z(l—22—y?)
y =z+y(l—2>—y?)

Solution

d
a(wz +y?) = 2zz’ + 2yy’ = 2(2? + y?)(1 — 22 — y?)

There is a single stationary solution at (0, 0) (via multiplication by y and = and then subtraction).

Let R = {(z,y) € R| 1 <2? +y% < 2}, a closed and bounded set. (0,0) ¢ R. Thus, a nontrivial
periodic solution exists.

x = —cos(t) o
. = satisfies the problem
y = sin(t)

Therefore, it is a solution. Generally, see above and have t instead be f(t)

136



	Chapter 1: Review and Preliminaries
	Complex Numbers
	Definition: Linear Dependence
	Field properties of complex numbers
	Properties of complex conjugate and norm
	Example
	Theorem
	Theorem
	Example

	Vector Spaces, Subspaces, Bases
	Examples of vector spaces
	Subspace Criterion
	Example: Find a basis for ℂ once as a real and once as a complex vector space.
	Linear independence
	Spanning
	Linear independence
	Spanning

	Example: Span
	Linear Transformation and Matrices
	Example 1.18
	Definition of tr, trace
	Flatness Theorem
	Example
	Theorem
	Proof

	Isomorphism
	Example


	Chapter 2: Diagonalization
	Coordinate vector
	Example

	Coordinate vectors are isomorphisms
	Proof

	Change of Coordinates Theorem
	Proof
	Uniqueness
	Example

	Conversion Theorem
	Change of Coordinates Matrix
	Inverse of Change of Coordinates Matrix
	Proof
	Example
	Example

	Similarity
	Similarity from Change of Coordinates

	Eigenvectors and Diagonalization
	Example

	Eigenvalues, Eigenvectors and Eigenpairs
	Eigenvalues from the characteristic polynomial theorem
	Characteristic Polynomial
	Example finding Eigenvalues
	Over ℝ
	Over ℂ


	Why diagonal matrices are nice
	Diagonalizable Matrix Definition
	diag definition
	Find the Diagonalization of a Matrix
	Proof
	Example
	Solution

	Example
	Solution


	Similar Matrices and Characteristic Polynomial Theorem
	Proof

	Distinct Eigenvalues lead to linearly independent Eigenvectors
	Proof

	Exponentiating Matrix
	Proof for Diagonalizable Matrices
	Why we may want this:

	Example
	Solution


	Fundamental Theorem of Algebra
	Upper and Lower Triangular

	Chapter 3: Jordan Form
	Block Multiplication of Matrices
	Theorem: Schur's Theorem
	Proof
	Example
	Solution

	Recall: Existence of Upper Triangular Matrix
	Example:
	Solution


	Definition: matrix input into a polynomial
	Cayley-Hamilton theorem matrix
	Proof

	Jordan Canonical Form
	Example

	Theorem: Steady state kernel space
	Generalized Eigenvector
	Theorem: linearly independent generalized eigenvectors
	The dimension of the generalized eigenspace
	Existence of Jordan Canonical Form
	Example
	Solution

	Motivation for exponentiating
	Example
	Solution

	Example
	Solution


	Theorem: Finding J
	Example
	Example
	Solution


	Nilpotent
	Applications of Jordan Form
	Overall Objective
	Analytic function
	Theorem: analytic over reals to convergent over the complex
	Theorem: analytic function of a diagonalizable matrix
	Proof

	Theorem: analytic function of a diagonalizable matirx.
	Proof
	Example
	Example
	Solution



	Chapter 4: Ordinary Differential Equations
	Definition of Differential Equation
	Definition of Ordinary Differential Equation
	Example

	Definition of Partial Differential Equations
	Definition of Order
	Goals
	Definition of Explicit Differential equations
	Example

	Existence and Uniqueness Theorem for explicit differential equations
	Proof

	Definition of Linear Differential Equations
	Solution to First-Order Linear Differential Equation
	Proof

	Existence and Uniqueness of First Order Linear Differential Equation.
	Example
	Solution 1
	Solution 2


	Separable Equation
	Example
	Solution


	Stationary Definition
	Example
	Solution
	Stationary



	Change of variables
	Example
	Solution

	Example
	Solution

	Example
	Solution


	Exact Equations and Integrating Factor
	Example
	Solution


	Exact Definition
	Theorem for seeing if Exact
	Proof
	Example
	Example
	Solution

	Example
	Solution

	To find an integrating factor
	Example
	Solution



	Chapter 5: Existence and Uniqueness Theorems
	Existence and Uniqueness Theorem for Linear Equations
	Example
	Solution

	Example
	Solution 1
	Solution 2


	Picard Iterates
	Proofish
	Example
	Solution

	Example
	Solution

	Thoughts
	Examples of knowing the existence but not finding it
	Example of Summation converging
	Solution

	Example
	Solution


	Integral Comparison Theorems
	Mean Value Theorem
	First-Order Differential Equations Existence and Uniqueness
	Proofish of existence
	Example
	Solution

	Proof of Uniqueness
	Example
	Solution



	Chapter 6: Numerical Methods
	The Lagrange Remainder Theorem
	Euler's Method
	Getting the idea
	Example
	Solution
	1 Step
	2 Step



	Euler's Method: Error
	Example
	Solution


	Alternative Approximations
	Left Endpoint
	Runge-Midpoint
	Runge-Trapezoidal
	Runge-Kutta
	Example
	Solution
	Midpoint
	Trapezoidal


	Example
	Solution



	Chapter 7: Higher Order Linear Equations
	Definition of Linear Equations
	Uniqueness and Existence Theorem for Differential Linear Equations
	General Solution to a linear differential equation from a particular solution
	General Solution
	Example
	Solution


	Particular solution
	Find the General Solution to a linear differential equation
	Find the general solution to homogenous linear equations
	Example
	Solution

	Is this always the general solution?

	Dimension of the Solution Set for a Linear Equation
	Proof

	Fundamental Set of Solutions
	Natural Fundamental Set of Solutions
	Example 7.4
	Solution


	Wronskian
	Generic Example
	Solution


	Abel's Theorem
	Proof of the furthermore
	Proof of the rest of the theorem
	Example
	Solution

	Example
	Solution


	Theorem on the Wroskian's functioning
	Proof


	Chapter 8: Linear Equations with Constant Coefficients
	Example
	Solution

	Example
	Solution

	Definition of Characteristic Polynomial
	Linear Independence of Exponentials
	Proof
	Proof 2, electric boogalo
	Example
	Solution

	Example
	Solution


	Key Identities (Showing why n repeated roots)
	Proofish

	Definition of multiplicity
	Theorem on multiplicity after derivatives
	Proofish

	Zero derivatives from repeated roots
	Theorem to find solutions of differential equation
	Example
	Solution
	Equation 1
	Equation 2



	Reduction of Order
	Example
	Solution

	Example
	Solution


	Method of Undetermined Coefficients
	Example
	Solution

	Example
	Solution

	Example
	Solution

	Example
	Solution

	Example
	Solution

	Example using the theorem
	Solution


	Variation of Parameters
	Example
	Solution



	Chapter 9: Power Series Solutions
	The Idea
	Analytic
	Composition of analytic functions via addition, multiplication, and division
	Ordinary Point
	Theorem for showing that an answer is analytic
	Example
	Solution

	Example
	Solution

	Example
	Solution


	Singular Point
	Example

	Series solutions near regular singular points
	Euler's Equation
	Solution
	Example
	Solution


	Regular Singularity
	Motivation
	Example
	Solution

	Example
	Solution


	Theorem
	Proofish
	Example
	Solution



	Chapter 10: Laplace Transform
	Laplace Transform
	Example
	Solution


	Table of Laplaces
	What can go wrong with the Laplace
	Piecewise continuous
	Exponential Order
	Examples

	Theorem on the existence of the Laplace
	Equality of Laplaces
	Examples
	Example
	Solution


	Theorem on the order of a solution
	Theorem on the Laplace of a derived function
	Proof

	How to find a particular solution
	Theorem on derivatives
	Proof

	Examples
	Example
	Solution

	Example
	Solution

	Example
	Solution


	Definition of Heaviside
	Example
	Example
	Solution

	Example
	Solution


	Convolution
	Product of Laplaces
	Proofish
	Example
	Solution
	Another solution



	Chapter 11: Systems of Differential Equations
	First-Order System
	Example
	Solution


	Linear Systems
	Example
	Solution

	Example
	Solution

	Example
	Solution


	To solve a nth order linear differential equation
	Existence and Uniqueness theorem for First-Order Differential Equations
	Example
	Solution


	Dimension of First-order Homogenous Linear System
	Proof
	Proof of subspace
	Proof of subspace, alternative
	Proof of Basis
	Linear Independence
	Spanning



	Wronskian
	Wronskian shows when a solution works
	Proof

	Relation to other Wronskian
	Wronskian is never zero if it isn't zero at a point
	Proof

	Abel's Theorem
	Fundamental Matrix
	Solutions from Fundamental Matrix
	Example
	Solution



	Chapter 12: Linear Systems with Constant Coefficients
	Homogenous Linear Systems with Constant Coefficients
	Example
	Solution


	A different way to find et A
	Example
	Solution

	Example
	Solution

	Example
	Solution

	Example
	Scratch
	Solution


	Eigenpair Method
	Theorem for eigenpair method
	Example
	Solution

	Example
	Solution
	Example
	Solution

	Example
	Solution


	Variation of Parameters
	Example
	Solution


	Laplace Transform
	Example
	Solution



	Chapter 13: Qualitative Theory of Differential Equations
	Definition of Autonomous System:
	Stationary
	Semistationary
	Example
	Solution

	Example
	Solution

	Example
	Solution
	Semistationary



	Questions
	Orbit Equation
	Example

	Stability
	Notes
	Example
	Solution
	Scratch
	Actual Solution


	Example
	Solution

	Example
	Solution

	Example
	Solution
	Scratch
	Solution



	Asymptotically stable
	Vibe-based Stability Examples

	Stability of the solutions to d xd t = A x
	Example

	Theorem on Stability in nonlinear systems near stationary solutions
	Getting the vibe of the answer
	Example
	Solution

	Example
	Solution


	Review
	Example of an inverse Laplace
	Scratch
	Actual solution

	Example 8.6


	Chapter 14: Orbits and PHase Plane Portraits
	Orbits
	Define
	Existence and Uniqueness Theorem for Autonomous Systems
	Proof

	Theorem on Properties of Orbits
	Proof

	Arc Length
	Example
	Solution
	Stationary Solutions


	Example
	Solution

	Example
	Solutions


	Phase plane Portraits
	Example
	Solution

	Example
	Solution
	Example
	Example
	Solution

	Example
	Solution

	Example
	Solution

	Example
	Solution


	Poincare-Bendixon Theorem
	Example
	Solution:

	Example
	Solution

	Example
	Solution



