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1. Preliminaries

1.1. Set Operations
Let A and B be sets.

1.1.1. Intersection
ANB={z|z € ANz € B}

1.1.2. Union
AUB={z|z € AVz € B}

1.2. Singleton

A set containing only one element

1.3. Universal Set
Denoted U, all sets are subsets of U.

1.4. Properties of union and intersection
1. AnNBCA
2. AnBCB
3. ACAUB
4. BCAUB

1.5. Complement
If there is a universal set, A€ is the set of all elements in the universal set but not in A.

1.6. Minus

Denoted A \ B, it is all the elements in A that are not in the elements in B.
Furthermore, A\ B = AN B°.

1.7. Subset

A set A is a subset of a set B if every element in A is also in B.

For example, if A = {1,2,3}, B={a,b,¢,1,2,3}, A C B.

1.8. Empty Set
The empty set has nothing in it. It is denoted .

1.9. Functions
A function from a set A to a set B associates an element of B with each element of A.
A is called the domain, and B is called the codomain.
f:A—B
flx)=22+3
If A={1,2,4}, {5,7,11} C B.

For each element x € A, f associates x with someone element y € B.



We write f(z) = y. We say f maps z to y.

1.9.1. Example

1

fla)=—

FiR\{2} >R

1.10. Image
Let there be a function f: A — B

f(A) ={yly = f(z) Az € A}
The image of A is then f(A)
1.11. Injective/One-to-one
f:+ A — Bisinjective if:
Vzy,29 € A, f(z1) = fzo) = 71 = 29
Therefore, if f(x) = y, then z is the only element of A that f maps to y.

1.11.1. Example
f(z) = 3z + 1 is one-to-one, f(z) = x2, is not one-to-one

1.12. Surjective/Onto
f:A— Bisasurjection if f(A) = B.

Ve e B,dye A,z = f(y)

1.13. Bijective
If f is injective and surjective, then f is bijective.

1.14. Set Cardinality

A set’s cardinality is the number of elements in the set.

Two sets A and B have the same cardinality if there exists a bijection function f : A — B.

1.14.1. Example
Z, Q, N and A have the same cardinality, called countably infinite.

1.15. Existence of Inverses
An inverse of a function exists iff a function is bijective. The inverse of f is denoted f~!.

1.16. Axioms of Real Numbers
R are built based on three axioms:
1. Field Axioms
1. Commutativity of addition: Va,b e R,a+b=b+a
2. Associativity of addition: Va,b,c € R,a+ (b+¢) = (a+b) +¢
3. Additive identity: there is a real number, denoted 0, such that Va e R,0+a=a+0=a
4. Additive inverse: for each a € R,3b € R so that a + b = 0.

10



5. Commutativity of multiplication: Va,b € R,a x b =b X a
6. Associativity of multiplication: Va,b,c € R,a x (b x ¢) = (a x b) X ¢
7. Multiplicative identity: there is a real number, denoted 1, such that Va e R,1 x a = a X
l=a
8. Multiplicative inverse: Va e R,a #0 - b e R,ab =1
9. Distributive property: Va, b,c € R,a(b+ ¢) = ab + ac.
10. Nontriviality, 0 # 1.
2. Positivity axiom
¢ How Reals are ordered
3. Completeness axiom
¢ Reals have no gaps

1.16.1. Proposition 1
The element 0 is the only real number satisfying the additive identity property.

1.16.1.1. Proof
Suppose Jdz € R, so that Va € R,z + a = a.

Let b be the additive inverse of a.

=z+0
=z+(a+0b)
=(z4+a)+0b
=a+b

Therefore, z = 0.

1.16.2. Proposition 2
The element 1 is the only real number satisfying the multiplicative identity property.

1.16.2.1. Proof
Suppose 4z € R, so that Va € R,z X a = a.

Assume a # 0, and then let b be the multiplicative inverse of a. Then,
z
=1xz
=axbxz
=zxaxb
=axb
=1

1.16.3. Proposition 3
Va € R,0a =a0 =0

1.16.3.1. Proof
Let a € R, and let b be the additive inverse of a.

1



0
=a+b
=la+b
=(1+0)a+b
=la+0a+b
=a+0a+b
=a+b+0a
=0+ 0a
= 0a
=al

1.16.4. Proposition 4
Ifa,b € Rsuchthatab=0,a=0VvVb=0

1.16.4.1. Proof

Let a,b € R, such that ab = 0.

Ifa=0,a=0Vb=0is true, because a = 0.

Otherwise, WLOG, suppose a # 0.

Then, there is a multiplicative inverse ¢ of a such that ca = 1.

0
=c0
= c(ab)
= (ca)b
=1b
=b
Therefore b = 0, and similarily b # 0 — a = 0, and so a = 0 V b = 0 is always true.

1.16.5. Proposition 5
Va € R there is a unique solution x to the equation a + x = 0.

1.16.5.1. Proof
Leta € R.

Let b be the additive inverse of a. Therefore, z = b is a solution.
By contradiction, suppose = = y also a solutionto a +x =0, b # y.
b

=b+0
=b+(a+y)
=(b+a)+y
=(a+b)+y
=0+y

12



=Y

But by assumption b # y, so our assumption was wrong, and therefore there is only one solution x
toa+x=0.

Since each a € R has a unique additive inverse, we denote it by —a and define subtraction by a —
b=a+ (-b)

A similar proof show for any nonzero a € R, we have a unique multplicative inverse, denoted by
a~!, and define the quotient of a and b as

—=ab!

S| Q

1.17. Exercises
Prove the following:
1. —(—a)=a

2. =b

3. (=b) = —(b1)
4. (—a)db :1—(ab)
5. (ab™!) " =a'b

1.18. Positivity Axioms of Real Numbers
There is a subset P, called positive numbers, of real numbers with the following properties:

1. a,beP —aba+belP

2. Ya € R, exactly one of the following is true:
l.aeP
2. —a€P
3.a=0

These axioms let us define > or < operators.

Leta,b € R.

lLa>bifa—beP
2.a<bifb—aelP
.a=bifa—b=0

Then,a € P < a > 0.

1.18.1. Proposition
If a € R\ {0}, then a? > 0.

1.18.2. Proposition
IfacP thenateP

1.18.3. Proposition
Ifa>b(c>0—ac>bc)A(c<0—ac<be).

1.19. Interval Notation
Let a < b, then we define

13



1. (a,b) ={z €eR|a <z <b}
2. [a,b)={z eR|a<z <)}
3. (a,b] ={z eRla<z < b}

4. [a,b) ={z €eR|a <z <]}

1.20. Inductive Set
A set S is inductive iff
1.1e€S

2. VxeS,z+1€S8§

1.21. Natural Numbers: N
Let I be the collection of all inductive sets.

Define:

N=S

Sel

1.21.1. Proposition
The natural numbers N are inductive

1.21.1.1. Proof
First point:

vSel,leS—1e€()S
Sel

Second property:
LetzeN.ThenVSel,zreSandVSel,z+1€S
Therefore, N is inductive.

1.22. Properties of N

Forn,m e N:

1. m+neN
2. mxneN

1.23. Integers: Z
Z=NU{0}U{—=zx|z € N}

1.24. Properties of Z
For n,m € Z:

1. m+neZ
2. m—n€EZ
3. mxXnéeZ

14



1.25. Rationals: Q
Q:{ﬁ‘n,mez,m#O}
m
1.25.1. Proposition
Q satisfies the field and positivity axioms.

1.25.2. Proposition
Va,be Q,a<b,dceQ,a<ec<d

1.25.2.1. Proof:
Let c = 2. ¢ € Q by the field axioms.

1.25.3. Facts
1. Each rational number can be written as ™ where either 2 { m v 2 } n..
2. An integer n is even iff n? is even.

1.25.4. Formational Example
fz) =222
f(1) <0, f(2) > 0 It would be good if J¢,1 < ¢ < 2, f(c) = 0.

But this is impossible in the rationals.

1.25.5. Proposition
There is no rational number a so that a? = 2.

1.25.5.1. Proof
On the contrary, assume a € Q where a? = 2.

Therefore, a = 7+, m,n € Z. By a fact we know that either m or n is odd.

m
a=—
n
2
m
a2
2= =15
2n2 = m?
Therefore, m? is even, which means that m is even.
Since m is even, dk € Z, m = 2k.
Thus,
2n2 = m?2
o2n? = 4k?
n? = 2k2

15



Therefore n? is even, which means that n is even.
Both n and m are even, which is a contradiction.

Therefore, there is no a € Q with a? = 2.

16



2. Tools of Analysis

2.1. Bounded Above

A nonempty S C R is bounded above if
deeR,VzeS,z<¢

¢ is then an upper bound.

2.2. Bounded Below

A nonempty S C R is bounded below if
deeR,VzeS,c<z

c is then a lower bound.

2.3. Completeness Axiom
Every S C R that is bounded above has a least upper bound ¢ so that Vz € S,z < c and if b is an
upper bound of S, ¢ < b.

2.4. Definition of Real Numbers

Any set that satisfies the
¢ Field axioms

e Positivity Axoims

e Completeness axiom

is equivalent to R

2.5. Supremum
The supremum of a set is the least upper bound of that set.

2.5.1. Example
sup([2,3)) = 3.

2.6. Infimum
Every S C R bounded below has a greatest lower bound, ¢ = inf §

27.V/2€R
IOW, Ja € R=0 q? =2

2.7.1. Proof
Let S={zeR|z >0,z <2}.

2 is an upper bound. Let a = sup(S)

On the contrary, assume a? > 2. Let r = “;;2. r > 0.

a2—2_

Py 2

r>0
(a—r)2=a®>—2ar+1*> > a® —2ar =a® — 24

vee S, (a—r)?2>2a—r>x

17



a—r<a,a<?2.
(incomplete)
2.8. Archimedean Property

1. Forallc € R,c > 0, there exists n € Nwithn > ¢
2. Foralle € R,z > 0, there exists n € Nwith 1 < ¢

(these statements are equivalent.)

2.8.1. Proof
We will prove the first statement.

On the contrary, assume dc € R,Vn e N,n < c.

Let b = sup N. This must exist because c is an upper bound of N. Since b is the least upper bound,
b — 3 is not an upper bound. Therefore, 3n € N,n > b — 3.

Then,n+1> (b—3) +1=0b+ % >b. Therefore, n+1 > b, but n + 1 € N. Therefore, c does not
exist, and so the first statement is true.

2.9. Integers will not exist between integers
Let n € Z. There is no integer in (n,n + 1).

2.9.1. Proof

Consider the set {k|k € N,k > 1}. It is an inductive subset of N (by the positivity axioms), and
therefore it is N. Therefore, Vk € N, k > 1.

Since all positive integers are in N, the interval (0,1) NN = @&.

Now suppose k € (n,n+ 1) NZ. Then, n < k < n+ 1. Therefore, 0 < k —n < 1. kK —n € Z. Since
k—n>0andk € Z, k € N. Therefore, k —n € (0,1) NN, but (0,1) "N = ¢, so k does not exist,
and there is a contradiction.

2.10. Sets of integers have maxima
If S is a nonempty set of integers that is bounded above, then S has a maximum.

2.10.1. Proof

Let a = sup S. a is the least upper bound of S. Therefore, a — 1 is not an upper bound. Therefore,
dn € S,a —1 < n. Therefore, a < n + 1. Then, S C (—oo,n + 1). By the previous result, (n,n + 1)
contains no elements.

(—oo,m 4+ 1) = (—o0,n] U (n,n + 1). Therefore, S C (—oo,n], and n € S, so n is the maximum of
S.

2.11. One integer exist in each interval of size 1
Foranyc e R,3n e N,n € [c,c+ 1)

2.11.1. Proof
LetS={n|ne€Zn<c+1}.

Ifc>0,then0 € S.

18



If ¢ < 0, by the Archimedean property, 3m € N, m > —c. Thus, —m < ¢ < ¢ + 1, therefore —m € S.
Therefore S # &.

By the previous result, S has a maximum n.

By defintion of S, n < ¢+ 1.

Ifn<c—n+1<c+1andthereforen+ 1 € S. But this is impossible since n was the max of S
and therefore n > c.

Therefore,c <n<c+1landson € [c,c+1).
Letn,m € ZNc,c+1).
WLOG, assume m < n:
0<n—m<(c+1)—c=1
0<n—m«l1
Son—m € [0,1) NZ and therefore n —m =0 — n =m.

2.12. A rational exists between any two reals
For any a,b € R with a < b, 3¢ € Q with a < ¢ < b, and therefore ¢ € (a, b).

2.12.1. Proof
Let % < b — a. Then: (This is incomplete)

nb—1<m<nb

1
a<b—-<2 <y
n n

2.13. Dense
Aset S C Ris dense iff Va,b e Rja < b — SN (a,b) # @.

2.13.1. Examples
Q,R\NQ,A,Q\Z

2.14. Absolute Value
| ‘| R=>{zeR|z>0}

| = z ifxz>0
T l—=zifz <0

2.14.1. Properties
1L Ifd>0,c] <diffd<c<d.
2. Ve eR,—|z| <z < |z

2.15. Triangle Inequality
Va,b,€ R, |a+b| < |a| + |b|
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2.15.1. Proof
—la] <a <a
—[b] < b < [b]
—la] —b| <a+b < |a|+ |b|
—(la[ +[b]) <a+b < |a] + |b|
< a+0b| <la| + b|

2.16. Some Sums

n—1
a®—b" = (a—0b) Za”flfkbk
k=0
n 1_,,,n+1
Vr#0y rh=—"
r# ,k;r —
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3. Sequences

3.1. Sequences
A sequence is some function a : N — R. This is typically written as some a,, rather than a(n).

The entire sequence is denoted like {a,, }.'

3.1.1. Examples
{n?} ={1,4,9,16,...}
{1 + (_1)n} = {O’ 27 Oa 27 O: 2, }

1
{a,,} where a,, € (0, —)
n

a; =1,a,,1 =3a,+1,{a,} ={1,4,13,...}
111
— 1o o =
tan} { 1916’ }

-]

L |
- {31}

3.2. Convergence of Sequence
A sequence {a,,} converges to a € Rif Ve > 0,AN,n > N — |a,, —a| < &.

Therefore, we say:

lim a, =a
n—oo

3.2.1. Example: Converge
Prove {a,} = {1} converges to a = 0.

Fix e > 0.

Let N > L. Therefore,n > N > 1 and:

'Or perhaps (a,,) or (a,)>

n=1
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3.2.2. Example: Does not converge
Prove {a,} = {1+ (—1)"} does not converge.

Assume {a, } convergestoa.Lete =1,a € R, let N > 0. Let n; be the smallest even number larger
than IV and let n, be the smallest odd number larger than V.

\2—a|:|an1—a’<s
la] =10 —a| = |a,, —a| <&
2=12—a+ad|
<|2—al+ lal
<|2—a|+e¢
<e+te
<2

But 2 < 2 is false, so it does not converge.

3.3. Cannot converge to two different values

(lim a, =aA lim anzb)—>(a=b)

n—,oo n—oo

3.3.1. Proof
Fix e > 0. Then 3N, such that if n > N then |a, —a| < §, and 3N, such that n > N,, then |a,, —
bl <e.

Consider e = b — a. (WLOG, b > a).
Let N > max{N;, N, }. Then if n > N
e=|b—al
= |b_an+an_a|
< |b_an| + |an_a‘|
< c + £ <e€
2 2
But ¢ < ¢ is impossible, and so b > a is false, and therefore a # b.

3.4. Create Limit to Zero
{a,,} 2 a<+{a, —a} —0

3.4.1. Proof

Prove — direction. Fixe > 0. 3N > 0,n > N — |a,, —a| < e.
Therefore, |(a,, —a) — 0| < e.

Prove « direction. Fixe > 0.3N >0,n > N — |(a,, —a) — 0| < e.
Therefore, |a,, —a| < e.

Therefore < is proven
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3.5. All Convergent Sequences are Bounded
If {a, } converges, then IM > 0,Vn,|a,| < M

3.5.1. Proof
Let a be the limit of {a,, }.

Choose ¢ = 1.
AN,n> N — |a, —a| < 1.

Let M = max{a + 1,|a4],|as], .., |an_1|}
Clearly, Vn e NN [1,N —1],M > |a
Ifn>N,then M —a, =M —a, —a+a.

nl-

Then
M—-a,=M-—a,+a—a
= (M —a)—(a, —a)

>M—a—1
=M—(a+1)
>0

3.6. Comparison Lemma
Suppose {a,,} — a. Then {b,} — b if 3¢ > 0,3N; > 0,Vn > Ny, |b, — b| < c|a,, — al.
3.6.1. Proof
Fix e > 0.

€
Let N = max{N;, N,}. Then if n > N:
g

c

|b, —b| < Cla, —a] < C—= =¢

3.7. Addition of Sequences
If {a,} - aand {b,} — b, then {a,, +b,} = a+b.

3.7.1. Proof
Fix e > 0.

Then, let N = max{N;, N, }. Therefore:

n2N—>\an—a|<§/\]bn—bl<§
g

2 = ¢

n> N |(a, —a)+ (b, —b)| < la, —al + b, —b| < 5 +
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3.8. Multiply Sequence by Constant
If {a,} = aand a € R, then {aa,, } — aa.

3.8.1. Proof

Fix e > 0. Vn, |aa,, — aa| = |a||a,, — a| < 2|al|a, —a

Apply the comparison lemma.

3.9. Multiply Zero-Valued Sequence by Zero-Valued Sequence
If {a,} — 0and {b,} — 0O, then {a,b,,} — 0.

3.9.1. Proof
Fixe > 0.3N;,Ny,n > N; = |a, — 0| < v/e,n > Ny — |b,, — 0| < /E.

Let N = max{N;, N,}.

n> N — |a,b, — 0| = |a,b,| < Veve=¢
3.10. Multiply Sequence by Sequence
If {a,} — aand {b,} — b, then {a,b,} — ab.

3.10.1. Proof
Let o, = a,, —a, B, = b, —b.Then {e,,} — 0, {5,} — 0.

Also, [a,,b, — abl = |(a, +a)(B,, +b) + ab| = |, 8, + af, + ba,|.
Observe that {«,,5,} — 0, {a8,,} — 0, {ba,,} — 0.
Let ¢, = {e, 8, + aB, + ba,}. Then, {c,} — 0 and so {a,,b,, — ab} — 0, and so {a,,b,,} — ab.

3.11. Reciprocal of sequence
If {b,} — b,and b # 0, then { £ } — 1.

3.11.1. Proof
We must find C, N; > 0, so that if n > Ny,

L —tl<cp-b,l.

b—b

nl

11‘_1

b, bl |b,|lb]

n nll

Therefore, we need to show that {‘b—l‘} is bounded.
Observe that |b| = |b—b,, + b, | < |b—b,| + |b,|.
Therefore, |b,,| > |b| — [b —b,,].

Lete = |2|.

18]

Then, 3N > 0 such that if n > Ny, then [b, —b| <e =5

L}

Then, |b,] > [B] — [b— b, | > [b| — & = &

1 2
1 <2
Then, g1 <

Therefore:
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1 1

1
= ——1b
b b‘ ]

2
—b < —1b, —0
< b

n

And therefore, by the comparison lemma, {bl} — 1.

3.12. Division of Sequences
If {a,} = a,and {b,} — b,b # 0, then {Z—:} — &

3.12.1. Proof
Letec, = %. Then, {Z—:} = {a,c,}

By a proposition, {c,} — , and so {a,,c,,} — ¢ by a proposition.
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4. Continuous Functions

4.1. A subset of the reals is dense based on sequential denseness
S C Ris dense iff, Vz € R, 3{a,} C S,{a,} — =

4.1.1. Proof

Suppose S C R is dense.

Letz € R. Leta, ESﬂ(m—%,x—i—%).
Fixe > 0.Let N > 1.

Thenifn > N,

(=27 +3)
a,€|lr——,x+—
n n

1 1
r——<a,<T+—
n n

1 1
——<a,—r<-~—
n n

| |<1<1<
a, — T - - e
" n_ N

For the alternate direction, suppose that Vz € R,3{a, } C S, {a,,} — z.Let (a,b) C R.Letz € 2.

_ b=
Lete = Ta-

Ha,} 2 2,IN >0,n > N — |a, — x| <&,

So:
—<<a,—r<e¢
r—e<a,<zT+e
a, € (r—e,x+e¢)

a, € (a,b)
Since a,, € S,and a,, € (a,b), a, € SN (a,b), and so S is dense.

4.2. Nonnegative sequences converge to a nonnegative number
If a,, > 0 and {a,, } — a,then a > 0.

4.2.1. Proof
Suppose a < 0 and let ¢ = %.Then AN, n> N = |a, —a| <e= %, so

|a|<a —a<|a|
2 " 2
a a
§<an—a<—§
3a

a
—<a,<=<0

a, <0
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But a,, was supposed to have the property a,, > 0. Therefore, the lemma holds.

4.3. Squeeze Theoremish Proposition
Suppose {a,,} C [b,c] and {a,} — a. Then, a C [b, ]

4.3.1. Proof
Since a,, > b, a, —b >0,

{a, —b} —2a—-0>0

Similarly, ¢ — a > 0, so:

4.4. Closed Sets
A set A C R is closed if whenever a sequence {a,,} C A converges to a, then a € A.

4.4.1. Example
If A and B are closed, A U B is closed.

4.4.2. Example

1 1
A, [—1+—,1——
mn n

A, =11
n€eN

4.5. Open Set
Aset A€ Risopenif Vo € A Je > 0such that (r —e,z+¢) C A

4.5.1. Example
@ and R are open and closed.

4.6. Relating Closed and Open Sets
A C Risopeniff R\ A is closed.

4.7. Go to ©
VM > 0,3N > 0such thatifn > N,a, > M

4.7.1. Example
{n-(—1)"} does not go to co and is also not bounded.

4.8. Monotone
A sequence {a,} is monotone if Vn € N, {a,,,1 } > a, or Vn € N,a,; < a,. The first is monotone
increasing, and the latter is monotone decreasing.
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4.9. Monotone Convergence Theorem
Let {a,,} be a monotone sequence. {a,, } converges iff it is bounded.

If {a,} is monotone increasing then {a,} — sup{a,}. If {a,} is monotone decreasing, then
{a,,} — inf{a,}.

4.9.1. Proof
(—) Suppose {a,, } is monotone and converges. Since {a,, } converges, by a theorem it is bounded.

(«) Suppose {a,, } is monotone increasing and bounded. Because {a,, } is bounded, the supremum
exists. Let a = sup{a,, }.

Fix e > 0.

Then, there exists NV such thata —e < ay < a.

Since it is monotone increasing, Yn > N, a, > ay > a — €. Furthermore, q,, < a.
Thus, |a, —a|=a—a, <a—a, <&

Therefore {a, } — sup{a,,}

Similarly if {a,,} is monotone decreasing, {a,,} — inf{a,, }.

4.9.2. Proposition

n

The sequence {Zkzl o3 }

4.9.2.1. Proof

n 11 : 1 1
Let a,, :Zk=1 Loke Since VnEN,anH —a, = a1 ont > 0, an—l—l > a,,

Therefore it is monotone increasing.

n 1 1_(l)n+1 1

— 2 —

0<a,< ok = T <1_l_2
k=1 2 2

Therefore, {a,,} is bounded.

Since it is bounded and monotone increasing, the sequence converges.

4.9.3. Proposition

Let a, = ZZ=1 1. {a,,} does not converge.

4.9.3.1. Proof

_ 1
ntl — @p = n+1

Claim: Vn € Nyagyn > 1+ 5

a >0,s0a,,; > a,,and {a,} is monotone increasing.

Base case (n = 2):

Suppose ayn > 1+ 3.

Then aynii = ay
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1 1 1
a2n+1 - a2n + 2n + 1 + 2'VL + 2 + A + 2TL + 2n
> + L + L +o

a n cese
=72" T onyon ' oon 4 9n on 4 on

n

> Qon + ——
2 Qg +2‘2n

1

:(l2n+§

>1404 1
- 2 2
n+1

>1
_-i-2

Thus, {a,, } is not bounded and therefore does not converge.

4.10. Nested Interval Theorem

Suppose A, =la,,b,] for —oo<a, <b, <oco. Suppose that VneN, A,  , CA, Then,
M., A, = [sup{a, },inf{b,}] # .

4.10.1. Proof

{a,,} is monotone increasing and bounded: a; < a,, < b,. Therefore, it converges to a = sup{a,, }.
Similarily, {b,} — b = inf{b,, }.

Claim: ﬂzo:l A, = [inf{b, },sup{a, }] and a <.

By a homework problem, a < b. Let z € [a,b]. Vn € Nz > a > a, Ax < b <b,. Therefore, Vn €
N,z € A,,andsoz € ﬂ20:1 A,,, and so therefore [a,b] C ﬂf;l A,.

Letz € 4,
Therefore, Vn € N:

x €A,

a, <z <b,

x is an upper bound of {a,} and a lower bound of {b,,}, and thisi z > sup{a,,} =a and z <
inf{b,} = b.So = € [a, b).
4.11. Subsequence
Let {n,} be a sequence of natural numbers that is strictly increasing (n; < n, < ng < --).
A subsequence of a sequence {a,,} is {b,} = {ank}'

This is usually just denoted by {ank}'

4.11.1. Example
{a,} = {3}

Let n, = k2, and then {ank} ={1,4 1 L .}
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4.12. Subsequences of a Convergent Sequence Converge
If {a,,} is a sequence that converges to a, then every subsequence also converges to a.

4.12.1. Proof
Fix e > 0.

3N, such thatn > N; — |a, —a| < e.

Let {“nk} be a subsequence of {a,}. Then, {n;} is a strictly increasing sequence of natural
numbers.

Therefore, N,k > N — n;, > N;. Thus, if k > N, |ank — a’ < e.
4.13. Peak Index

m € N is a peak index of a sequence {a,,} if Vn > m,a,, > a,.
This means that everything in the future is smaller (or the same).

4.14. Every sequence has a monotone subsequence.
Every sequence has a monotone subsequence.

4.14.1. Proof
{a,, } has either finitely many peak indices or infinitely many peak indices.

4.14.1.1. Case 1: Finite Peak Indices
This means that there is N € N so that there are no peak indices greater than N.

Letn; = N + 1. For all , let n;, be an integer such that a,, > a,, . This is possible because
there are no peak indices after N, which means that there is always a bigger point in the future.

Then {ank} is a monotone increasing subsequence.

4.14.1.2. Case 2: Infinitely Many Peak Indices
Let n;, be the increasing sequence of peak indices. Then, {ank} is monotone decreasing.

4.15. Bounded Sequences have convergent subsequences
Every bounded sequence has a convergent subsequence.

4.15.1. Proof

Take a monotone subsequence of the sequence, which is possible by above. Since the sequence is
bounded, the subsequence is bounded, and so since the subsequence is monotone and bounded,
it is convergent.

4.16. Sequentially Compact
A set S is sequentially compact if every sequence in S has a subsequence that converges in S.

S cR,Y{a,} CS,IHn,}, {ank} — a,a € S < S is sequentially compact.

4.16.1. Example
[0, 1]
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Let {a,,} C [0,1]. Then {a,,} is bounded, and therefore there is a subsequence that converges. Call
this {ank} — a. Since [0, 1] is closed, any sequence within converges within, and so a € [0, 1], and
therefore [0, 1] is sequentially compact.

4.16.2. Non-Examples
« (0,1)

» {£} —0,0¢(0,1)
e R
» {n} does not converge.

4.17. Bolzano-Weierstrass Theorem
A set S is sequentially compact iff it is closed and bounded.

4.17.1. Proof
(—) Let S be sequentially compact set.

Let {a,} C S, so that {a,} = a€R. H{ank} — b e S. But since {a,,} 2 a,a=bbe S —acs,
and therefore S is closed.

Assume S is not bounded.
vn € Nya, € S,|a,| >n
Let {ank} be a subsequence of {a,, }.
Let M > 0. Then if n > M, |a,,| > n > M.
Then,if k> M,n, > k> M, so ’ank| > M. Thus {ank} — oo and does not converge.
Therefore, S must be bounded.
(«<) Let S be a closed and bounded set.

Let {a,,} C S.Then {a,} is bounded, and so a subsequence {ank} converges to a. Because S is
closed {ank} CS—ach.

4.18. Continuous function
A function f: D C R — R is continuous if for all z, € D and all {z,,} C D converging to z,

Tim f(z,) = f(z,)

4.18.1. Examples
f(z) =322 +2z -1
fR—=>R

This is a continuous function. Let z, € R. Let {z,} — z,. Then {f(z,)} = {322 + 2z, — 1} =
3{z,}* +2{z,} — {1} — z, by various theorems about manipulating sequences.

f(x)z{; i;g,f:R—ﬂR
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Let {z,} = {—1}. Then lim f(z,) = lim f(—1)=1but f(0) =2, and therefore f(z) is discon-
n—oo n—oo
tinuous.

_JO z2€Q
This function is discontinuous everywhere.

4.19. Manipulating Continuous Functions
Suppose f,g: D — R are both continuous. Then:

e f -+ g is continuous

e f — gis continuous

e f x gis continuous

e g(x) #0 — ’é is continuous

4.20. Composing Continous Functions
Let f: U — D and g: D — R be continuous. Then g o f is also continuous.

4.20.1. Proof

Let {z,} C U with {z,} — 2, € U. Let y,, = f(z,,). Since f is continuous, {f(z,)} = {y,} —
f(zg) :==yo. Since f: U — D, {y,,} C Dandy, € D.Since g is continuous, {g(y,,)} — 9(y,)- Thus,
{g{f(z,)}} ={9(y,,)} = 9(yo) = g(f(z()), and therefore g o f is continuous.

4.21. Maximum and Maximizer
Let DCR and f: D — R be continuous. If there 3z, € D,Vz € D, f(z,) > f(z), then z, is a
maximizer of f and f(z,) is the maximum value.

4.21.1. Examples
e flx)=1,D=R
» maximizers are R
e f(x)=—-2?>,D=R
» maximizers are {0}, and a max value of 0.
hd f(:E) =z,D= (071)
» No maximizer
o f(z)=z,D=R
» No maximizer

4.22. Minimum and Minimizer
Let DCR and f: D — R be continuous. If there 3z, € D,Vz € D, f(z,) < f(z), then z, is a
minimizer of f and f(z,) is the minimum value.

4.23. Image
Let f: DC A— B, f(D) ={f(z)|z € D}.

4.24. Image of a sequentially compact set is sequentially compact
If D is sequentially compact and f : D — R is continuous, then f(D) is sequentially compact.
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4.24.1. Proof

Let {y,} C f(D).

For each n, there exists z,, € D such that y,, = f(z,,), by definition of image.

Since D is sequentially compact, there exists a subsequence {xnk} that converges to z, € D.

This can create a subsequence {f(xnk)} = {ynk}

Since f is continuous, lim f(xn ) = lim y,, = f(zy) := y,- Therefore, there exists a subse-
k—oo® N Tk k—oo "'k ]

quence of {y,, } that converges in D, and so f(D) is sequentially compact.

4.25. Extreme Value Theorem
If f: D — R is continuous, and D is sequentially compact, and f has both a maximizer and a
minimizer in D or f attains both its max and minimum values.

4.25.1. Proof
Since D is sequentially compact and f is continuous, f(D) is sequentially compact. We will show
that f(D) has a maximum.

Since f(D) is sequentially compact, it is closed and bounded. Therefore, sup f(D) exists.

Vn € N, let a,, € f(D) such that sup f(D) — 1 < a,, < sup f(D). Fixe > 0.Let N > L. Then if n >
N,

1 1

0< D) — < —-—< —
< sup f(D) a, <~ <+ <e

= |sup f(D) —a,| <e

Since {a,,} — sup f(D) and f(D) is closed, sup f(D) € f(D) and thus f(D) contains a maximum
value (sup f(D)).

Similarly, f(D) has a minimum value.
4.26. Intermediate Value Theorem

If f is continuous on the interval [a,b], and f(a) <c < f(b) or f(b) <c¢ < f(a), then 3z €
[a,b], f(z) =c.

4.26.1. Proof
Without loss of generality, f(a) < f(b). Let f(a) < ¢ < f(b).

Leta, = a,b; = b.Forn € N, let m,, = 220 1f f(m,) < cleta, , = m,,b,,, = b,.Otherwise, if
f(m,) >cleta, ; =a,,b, . =m,.

We claim that

Vn’agan San+1 Sbn+1 S bn S b

Base step: b; > a;.

Inductive step:

a,+b, b,+b,

If b, > a,, then either b, =b, and a, , = 25> < =252 <b,,, O a,,; =a, and b, ., =
a,+b, > a,+a,
2 =2 — 1
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Outside of induction, if a,,,; = a,,, thena, <a, ;. Ifa, , =m, = 5= > 252 =aq,.
This is similarly the case for b,,.

{a,,} and {b,,} are monotone and bounded, so {a,, } — a, and {b,,} — b,.

We claim that Vn,b,, > a,.

Suppose b,, < a,. Then, there exists m such that b,, < a,, < a.

Without loss of generality, m > n. Since the sequences are monotone, b,, < b, < a,, < a,, and
therefore b,, > a,. Similarily, Vn, a,, < b;.

Consider {b,, — a,, } — by — a,.

a,+b
b —a _ nQn_an_bn_an
n+1 n+l — . a,+b, 2

b, 5

=be [bal 0, and therefore 0 = b, — a,. By continuity, lim f(a,) =

By induction, b,, —a,, o
f(ag) and lim f(b,) = f(by)- By construction, f(a,) < ¢, and f(b,) > c. Therefore, f(a,) < ¢, and
n—,oo
f(bg) > c.
c < f(by) = flag) < c— f(by) = fag) = ¢
4.27. Roots exist
Ve>0,meN,dx e R, 2™ =c¢
4.27.1. Proof
f(@) =™
Note f(0) = 0 and therefore 0 < c. Further note f(c+1) =c¢™ + ...+ mc+ 1 > c because m € N
and therefore m > 1.

By the intermediate value theorem, there exists = € [0, ¢ + 1] such that 2™ = c.

4.28. Image of an interval is an interval
If I is an interval and f is continuous, then f(I) is an interval.

4.28.1. Proof
Case 1: I = [a, b]. Since I is sequentially compact, we can let & = min(f(I)), 5 = max(f(I)). We
claim that f(I) = [a, S].

Let f(z;) = o, f(z5) = B. WLOG, assume z; < z,. Let a < ¢ < . Then 3z € [z, z,), [z, 5] C
[a, b] such that f(z) = c. Thus, c € f(I) and f(I) = [«, 3].

4.29. Uniform Continuity
A function f: D — R is uniformly continuous if for all sequences {a,},{b,} C D if lim (a, —
n—oo

bn) = 0 then nh_EI;O(f(un) - f(vn))

4.29.1. Example
f(x) = x? is not uniformly continuous.
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Let {a,} =nand {b,} = {n+ 1} Then, {a, —b,} ={-1} = 0.
But {f(a,) — f(b,)} = {n? = (n— 1)’} = {n? —n?—2- %} = {-2- L} > 2
Intuitively, the slope increases too fast.

4.29.2. Example
f(z) = L is not uniformly continuous on (0, 1).

4.30. Continuous from uniform continuity
Every uniformly continuous function is continuous.

4.30.1. Proof
Let {b,,} = {z,} C D.
Then, {a,} = 24 <> {a, —b,} — 0.

Then, {f(a,,) — f(b,,)} — 0, which is equal to {f(a,,) — f(zq)} — 0, so {f(a,)} — f(z,), which is
equivalent to the definition of continousity.

4.31. Uniform continuity from Continuity
Suppose f : D — R is continuous and D is sequentially compact, then f is uniformly continuous.

4.31.1. Proof
Suppose f is not uniformly continuous. Then there exists {a,}, {b,,} C D such that {a,, — b
0but {f(a,) = f(b,)} + 0.

Then there exists ¢ > 0 and subsequences also called {a,,}, {b,,} such that |f(a,) — f(b,)| > € for
all n.

}—

n

By sequential compactness, there exists {ank }, {bnk }2 such that {ank} — aand {bnk} — b,a,b e
D. Since {a,, — b,} = 0,a=b=1x, € D.

Then {f(a, )} — {f(zo)} and {f(b,, )} = {f(xo)}. Then, {f(a, )—f(bs )} — flzo)—

f(zy) =0, but 0 < ¢, a contradiction.

4.32. Epsilon-Delta Criterion
f: D — R satisfies the ¢ — ¢ criterionat x; € Dif Ve > 0,30 > 0,|z —xy| <dAx € D — |f(z) —
f(zo)| <e.

4.32.1. Example
Show that f(z) = 23 satisfies the ¢ — § criterion at z, = 2.

4.32.1.1. Scratch

*This is questionable, but it does work by first finding a {ank} — a, and then finding a subsequence of {bnk},
such that {bnk } — b. Since {ank} —a, {ank } — a, and so these subsequences do exist
k k
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= |2? + 2z + 4| |z — 2|
—— e e e’
not huge small

Assume |z — 2| < 1. Then,
< 19|z — 2|

4.32.1.2. Proof

Fix ¢ > 0. Choose § < min{1, 5 }.

Since |z — zy| < ¢, then |z — z4| < 1 and then by above,

2 — 23 <195 < 195 =¢
4.33. Relating epsilon-delta criterion and continuity

Let f : D — R be continuous iff it satisfies the epsilon-delta criterion at all z, € D.

4.34. Uniformly Continuity by ¢ — § criterion
f: D — Ris uniformly continuous iff Ve > 0,3§ > 0 such that Vu,v € D, if |u — v| < d then |f(u) —

fv)| <e.

This makes sense because uniformness means that the § only depends on ¢.

4.34.1. Example
Prove that f(z) = z? is continuous at = = x, using the ¢ — § criterion.

Fix e > 0.

4.34.2. Scratch
If |z — 24| < 6 Then

|f(x) = f(@o)| = |* — 5|

= |x—m0|]:c+x0]

< O(|z| + |zo))
< 6(2|zo| +9)
< 0(2lzg| +1)
0
4.34.3. Work
Let § = min(m,l)

|z —zy| <6
[f (@) = f(zo)| <[z —o|llx] + flzo)] <2z +1) <e

This would not work for uniform continuity since ¢ depends on z,,.
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4.35. Monotone Function
f: D — R is monotone increasing if Va,b € D such that a <b, f(a) < f(b) or is monotone
decreasing if Va,b € D such that a < b, f(a) > f(b).

4.36. Continuity by image and monotone
If f: D — R is monotone such that f(D) is an interval, then f is continuous.

4.36.1. Proof
Suppose f(D) = I, but f is not continuous.

Then, there exists a sequence {z,} — z, such that {f(z,,)} + f(z;)-

Lety,, = f(z,), Yo = f(z(). Then there exists £ and a subsequence y,, so that V&,

ynk - yO’ 2 €.
WLOG, assume f is monotone increasing.

Then, there are subsequences we will also call {ynk} and {xnk} such that {xnk} is monotone.
WLOG, assume {xnk} is monotone increasing.

Since f(l“nk) =Yn, < Yo —€and f(zy) = y,, there must exist a z* € (z,,, ;) such that f(z*) =
Yo — &

Since {mnk} — T, there is a k such that z* <z, <=z, but f(l"nk) =Y, and y, <y, —¢ SO
this shouldn’t be true and therefore there is a contradiction.

4.37. Strictly Monotone Function
A function f: D — R is strictly monotone increasing if whenever z,y € D such that z < y, then
f(z) < f(y). For strictly decreasing, = < y implies f(z) > f(y).

Put simply, monotone but cannot go sideways.

4.38. Strictly monotone functions are injective
A strictly monotone function is injective.

4.38.1. Proof
Let f: D — R be strictly monotone. WLOG, assume it is increasing.

Let z,y € D such that f(xz) = f(y). On the contrary, assume z # y. WLOG, assume = < .
Since z <y, f(x) < f(y), but f(z) = f(y) so this is impossible and therefore a contradiction.
Therefore x = y, and f is injective.

4.39. Strictly monotone functions can be bijective
If f is strictly monotone, then f : D — f(D) is bijective.

4.40. Strictly monotone functions can have an inverse
A strictly monotone function f : D — f(D) has an inverse f~1.

4.41. Inverses are continuous
If Dis aninterval and f : D — f(D) is strictly monotone, then f~! : f(D) — D is continuous.
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4.41.1. Proof
Firstly, f~! exists by above, and f~1(f(D)) = D.

Let a,b € f(D) such that a < b. WLOG, assume f is monotone increasing.

Letx = f~1(a) and y = f~1(b). Therefore, a = f(z) and b = f(y). Therefore, a < b and so f(x) <
f(y) and therefore z < y.

Thus f~1(a) < f~1(b). Since f~! is monotone and f~!(f(D)) is an inverval, f~! is continuous.
4.42. "~ exists and define z”

Letn € Nand f: [0,00) — R be defined by f(z) = z™. Then, f is strictly monotone increasing.
f~1 exists and is denoted f~1(z) = z=. It is continuous. Then, z% = (a:%)m

Let r € (0, 00).

Let {a,,} C Q such that {a,,} — r. Define z" = lim z%.}
n—oo

4.43. Limit Point
Let D C R. z, € R is a limit point of D if 3{x,,} C D\ {z,} such that {z,} — =,.

4.44. Limit
f: D — Rhas alimit L as z approaches a limit point z,, if for all sequences {z,} C D\ {z,} such
that {z,,} — =y, {f(z,)} — L.

This is written:

4.45. Algebraic Limit Theorem
If le f(z) =Ly, le f(z) = Ly

lim f(z) +g(z) = Ly + Ly

T—Tq

lim f(z) — g(z)

T—Tq

lim f(z)g(z)

T—Tq

Ll_L2

LyL,

@ _ I,
xz) L,

~

L,#0— lim

T—=To g

—

4.46. Continuous Functions and Limits
Iff f: D — R is continuous and z, € D and z, is a limit point of D

Jim f(z) = f(ao)

3Unproven that this exists but oh well it does.
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5. Derivatives

5.1. Limit Definition of the Derivative
f: D — Ris differentiable at z, € D if z, is a limit point of D and

T T — Ty
exists, and f’(z,) is the derivative.

5.1.1. Example
Find f'(x) for f(x) = mx + b.

L f@) = fa)

T T — X T T —xq ToT, T — X T

Therefore f'(z) = m.

5.1.2. Example
Find f'(x) for f(z) = a™.

n n

=Ty T — Qjo T—Tq r — IL'O

= lim (2" + 202" 2 + 2" + o+ 2fPw + 2f )
T

R A N

— n—1
= NI

5.2. Differentiability implies continuity
A differentiable function is continuous.

5.2.1. Proof
Let f : D — R be differentiable.

Then, Yz, € D
i £@) = (o)

=T T —xq

exists

Furthermore, lim z — 2, =0
T—Tg

Then:

lim f(z)— f(zy) = lim flo) = flz) (x —zy) = lim flo) = flz) lim (x — z;)

T T T — X T—Tg T —x T

_ (hm f(z) —f(%))o _0

T T — Tg

Since f(zy) — f(zy) = 0 at each point, f(x) is continuous.
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5.2.2. Example: It’s not the other way
Show |z| is not differentiable at z, = 0.

lim —\x\ — 10 = lim @
z—0 x—0 z—0 T
Take the sequences {a,,} = {1/n} and {b,} = {—1/n}.
1
no_1q

1
Inl 4 _
=
n

—N
o o
-5
——
|
—
[ ] 1
S-S I=
——
|
|
sief?m 3=
|
|
—_

But 1 # —1, so the limit does not exist.

5.3. Combining Derivatives
If f,g: D — R that are differentiable, then:

1. (f+9)(x) = f'(z) +g'(x)

2. (fg) (x) = f(x)g(z) + f(z)g (x)
3 (1) (e :—9”2 if g(z) #0
4. () (@) = Later s @) it o) 4 g
5.3.1. Proof
Let z, € D.
(f + g)/(xo) — Ih_>nz10 f(.’l?) + g(rp);_(];(ox()) + g(wO))
o J@ = () | g@) — glzo)
T T — T
o J@ =) | ge) — gla)
=y T — T T=zy T —
= f'(zg) + ' ()
(5 (e =t L1 = Slaae
i F@9@) + F@)g(0) — f@)glw) — F(wo)g(wy)
Tz T — X
i F@)9(2) = F(@)g(w0) + F@)g(w0) — £w0)g(w0)
T T — Ty
i [@)9(@) — f@)g(wy) | f@)glag) — fla)gan)
T—T T — T T— T
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lim f(ac)M + g(mo)M

T—Tq xr — 1‘0 xr — xo

= lim f(z) lim M-ﬁ- lim g(z,) lim f(x) — f(zo)

=T T T —x T T T —x

= f()g" () + g(x0) f' (o)

5.4. Neighborhood
Let z, € R. I C R is a neighborhood of z, if I is an open interval z,.

5.5. Change of variables for limits
Let z, € R, I be a neighborhood of z, and f : I — R be continuous.

Then, if y, = f(z,) and lim g(y) exists,
Y—=Y%

lim g(f(z)) = lim g(y)

:17%1170 yqyo
5.6. Proof
Let J = f(I). J is an interval that contains y,,.
Let {z,} C I, {z,} — z,.
Lety,, = f(z,)- {v,,} — y, due to continuity.

We know lim ¢(y) = L, so {g(y,,)} — L.
Y—=Yo

Furthermore, {g(f(z,,))} — L
So lim g(f(2)) = L.

5.7. Invertibility for change of variables
If f: I — R is continuous and invertible then, Vz, € I,y, = f(z,), then

Jim g(f(2)) = lim g(y)
5.8. Derivative of Inverse
Suppose z, € R, I is a neighborhood of z, and f : I — R is differentiable with f’(z,) # 0, then if
f is invertible:

5.8.1. Proof
Lety = f(z).
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5.9. Derivative of Root

5.10. Chain rule
Suppose f: I - R and g: f(I) — R are differentiable.

Then,
(geof)(z) =g (f(2))f (z)
5.10.1. Proof
Letzy € I,y = f(z), yo = f(zg)-
9(f(x)) —g(f(z0)) _ 9(¥) —9(yo) flz)— f(xo)

T — g Y—Y L=y

If a neighborhood I” of z,, I’ C I where f is invertible exists, then
L 9 @)~ 9(f (@)
T T — g

_ i F®) = (o) o 9(Y) — 9(yo)
=g T — T Y—Yo Y—1Yo

= f'(20)g" (yo) = f' ()9’ (f (o))

If it is not invertible at z = z, then there {y,,} — z,and {z,} — =, {v,. },{z,} C I suchthaty, #
z, but f(y,,) = f(z,) foralln € N.

Then

Flan) — tim LI o S,) = fla)

=T T — T n— 00 Yn — To
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5.11. Power Rule (for rationals)
Letr € Q,r > 0. Let f(x) = z". Then, f'(z) = ra" 1.

5.11.1. Proof
Let r = ™. Let g(z) = 2™ and h(z) = z=. Then, f(z) = g(h(z)).
By the chain rule, f'(z) = h'(z)g’ (h(z)).

g'(x) = me™ !, b (2) = Lav !

5.12. The Derivative is Zero at a Maximzer
Suppose f : [a,b] — R is differentiable with maximizer z, € (a,b). Then, f'(z,) = 0.

5.12.1. Proof

T—T r—x zz2zxg T — X
r)— J\x
o f@) = fa)
T — I T — T
T >

0

If z <z, f(x) — f(zy) <0,and z — x5 < 0, and so therefore:

f(@) — f(=o)

>0

Therefore:

L @) = flay)

=T r—x
z<zg 0

>0

Alternatively, if z > z,. f(z) — f(zy) >0,z — z, > 0, and so therefore:

f(x) — f(zo)

T — T

<0

Therefore f'(z,) = 0.

43



5.13. Rolle’s Theorem
Suppose f : I — R is differentiable, and suppose a,b € I such that a < b, and f(a) = f(b). Then,
Jz, € (a,b) such that f'(z,) = 0.

5.13.1. Proof

f is continuous on [a, b]. Let m = m[inb] flz), M = m[mz] f(x).
xe|a, xeE|a,

Case:m=M

Then f(x) is constant for all z € (a,b), so f'(z) = 0 for all z € (a,b).
Case 2: f(a) =m V f(b)=m,m # M

Then, M = f(z,), z, € (a,b).

Case 3: f(a) =M V f(b) = M,m #+ M.

Then, the maximum of g, g = —f, occurs at z; € (a,b), and f'(z,) = —g' ().
Case 4: M € f(zy),z, € (a,b):

By the lemma, f’(z,) = 0, orin case 3, ¢'(z,) =0 = f'(z,) = 0.
5.14. Mean Value Theorem

Let f : I — R be differentiable. Let a,b € I, a < b.

Then, 3z, € (a,b), such that f'(z,) = W

5.14.1. Proof

_ f(b)—f(a)
Let g(z) = f(z) — xTaa

g : I — R is differentiable and g(a) = g(b).
f) —fla) _ fla)(b—a)+af(b)—af(a) _bf(a) —af(a)+af(b) —af(a)

g(a) = fla) — oL =1 = ol - i
o5 = sty /O —11@) _ SO0 =) £HI0) “b1(e) _ MO~ ef) + b))

By Rolle’s theorem, ¢/ (z,) = 0. f'(z) = ¢’ (z,) + {B=1@ — [ J@)

—a

5.15. Identity Criterion
f: I — Ris constant iff f' = 0.

5.15.1. Proof
(=) If f(x) =c, then

f'(z) = lim M: lim ——% — limo0=0
T—T,) T — Ty T — T T—T,)

(«) Suppose f’(z) = 0. Choose z, € I and let f(z,) = c.
Let & € I. Then, by the MVT, 3z, € (z,z,) such that f/(z,) = {21 g,

Thus, f(z) = f(z,) = c for all z.
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5.16. Equal derivatives differ by a constant.
If f,g:I — R are differentiable and f’(x) = ¢'(z) for all z € I, then Jc € R such that f(z) =
g9(z) +c

5.16.1. Proof
Let h(z) = f(x) — g(z). Then b’ (z) = f'(z) — ¢’(x) = 0. Then by the lemma, h(z) = ¢ for some ¢ €
R. Thus, f(z) = g(z) + c.

5.17. Strictly Increasing by derivative
Suppose f : I — R is differentiable, then f(z) is strictly monotone increasing if f'(z) > 0 for all
z el

5.17.1. Proof
Suppose f’(z) > 0 for all z. Then, let u,v € I, u < v. Then, by the MVT, 3z, € (u,v) such that

Thus f(v) > f(u).
5.17.2. Example

e f(0)=0
e fis not monotone near ®
e f’(x) is not continuous.

5.17.3. Example
Show that 1 + z + 2° = 0 has exactly one solution.

f(z) =1+ z + z° is continuous on the real numbers.
fO)=1,f(-1)=-1

Suppose there exists z; # z, such that f(z;) = 0. Since f is differentiable, we can apply the MVT
to see that there exists z € (z, z;).

fzy) — f(zo)

J'(z) = =0

But f/(z) = 2* + 1> 0,s0 f'(2) > 0, but f/(z) = 0, a contradiction, and therefore there is at most
one root.

5.18. Cauchy Mean Value Theorem

Suppose f,g: [a,b] — R are continuous and differentiable on (a,b) and Vz € (a,b), ¢’ (z) # 0.
Then, 3z, € (a,b):
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5.18.1. Proof
Let

g9(b) —g(a) #0
because otherwise, there exists x; € (a,b) such that ¢’(z,) = 0 by Rolle’s theorem.

Note that h(a) = h(b), which can be verified with algebra.

By Rolle’s theorem, 3z, € (a,b) such that h’'(z,) = 0, and therefore f’'(z,) — g'(mo)% =0
And finally:
f'(zy) _ f(b) — f(a
9'(xo)  9(b) —g(a)
5.19. Vague Taylor-series-like statement
Let f: I — R be n-times differentiable such that for some point z, € I
f(xo) = f'(wg) = f"(x) = - = "D (2) =0
Then for any x # z, x € I, there exists z between z an z,, such that
™ (z) n
5.19.1. Proof
Let g(z) = (z — z,)". By the CMVT, there exists z, € (z,,z) such that L&) = f@=fze) _ J(z)
0/ * ' 1 0 g'(z1) = gle)—g(zo) — g(2)

By the CMVT applied to f" and ¢’ in (z,, ). Then, there exists z, € (zy,z;):

() f@) — flag) _ fl@y) _ f@)
9" (z3) g (z1) — g’ () g’ () g()

Apply n times to get z,, € (z,, z) such that

f™(@,) _ flz)

9" (z,)  g(z)
f™,)  flx)

n! (x —xy)"

z = x,, and we have proven the theorem.
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6. Integrals

6.1. Darboux Sums
For some function f : [a,b] — R, let P be a partition of P, such that

P = [3307371’ Ty xn]

a=zy<z; <<z, 1 <x,=>b
Then, define

M;= sup f(z)

z€[z; 1,7

m; = sup f(z)
z€z; 1,7
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Assume f is bounded. Then, let

U(f,P)= M;(z;, —x;_y)

.
s M:
=

L(f,P) = m(T; —T;_4)

S
Il

U is called the upper sum and L is called the lower sum.

6.2. Upper and Lower Integrals
Let f : [a,b] — R be bounded. Let P be the set of all partitions of [a, b]. Then
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T denotes the upper integral and f denotes the lower integral.

Then

6.2.1. Proof
Let P,, P, € P. Let P* be a refinement of P, and P,. Then

6.2.2. Counterexample to equality
The Dirichlet function is a counterexample and is defined as

_J0 reQ
—b
Then, fa f=b—aand fbf =0since inf f(z)=0and sup f(x)=1due the density of

o€z 1,2;] Tz, x4

the rationals in the reals.

But b — a # 0 for b # a, which is very possible.

6.3. Integral
f : [a,b] — R is integrable if Ibf = T; f. Then,

b —b b
[o=]1-17

6.4. Lemma
For any partition P and a integrable function f : [a,b] — R, L(f, P) < fj f<U(f,P)

6.5. Archimedes-Riemann
f :[a,b] — R is integrable iff there exists a sequence of partitions P, such that

Moreover, for such a sequence,

n—oo n—oo

b
lim U(7,P,) = lim L(f.P) = [ f
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6.5.1. Proof
(«) If P, exists such that

lim (U(f, P,) — L(f, P,)) =0

n—oo

then,

inf U(f,p) < lim U(f, P,) = lim L(f,P,) <supL(f,P) < inf U(f,p)
peP n—00 n—o00 peP peP

Therefore:

inf U(f,p) = lim U(f,P,) = lim L(f,P,)=supL(f,P)= inf U(f,p)
peEP n—oo n—oo peP peP

And therefore

peEP

b
sup L(f, P) = inf U(/,P) = / f

And so f is integrable.

(—) Let f be integrable. Then,
b
| £=mtus,p
o peP

Let n € N. Therefore, there exists a partition P’ €  such that U(f, P’) < f: f+2

Similarly, there exists P” € P such that
b 1
L(f,P") >/ f_ﬁ
a

Let P, be a refinement of P’ and P”.

Therefore,

b b
UG P - LU P < [ frm— [ fe=2

n

Therefore, we know:
2

Since L(f,P,) < U(f,P,).
Therefore

lim (U(f, P,) — L(f, P,)) = 0

n—oo

6.6. Monotone Functions are Integrable
Monotone functions are integrable.
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6.6.1. Proof
Let f: [a,b] — R be monotone. Let P, be a partition with n + 1 equally spaced points. WLOG,
assume f is monotone increasing.

Then
U(f,P, = Zzn;MZ(xZ —Z;_q1)
- gf(%)(wz )
- g;f(m»(b;a)
L(,P,) = Zm@c o)
- Zf( (@ — i)
<Y ()
Then
U(f, P) — L(f, P,)
=31 (50) - s ()
- (=) (Z fz) —gﬂxz_l))
- (=) (Z f(y) —:ﬂwn)
= () e~ stao)
- (5w - )
And
i 0O~ )
Therefore

b n
b—a b—a
— _Z .
/ f n—>100 n ilf(a-i_z n )
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6.7. Additivity of the Integral
If f:]a,b] — R is integrable and ¢ € (a, b) then

/ /f+/f
6.7.1. Proof

Since f is integrable, there exists a sequence of partitions {P,,} such that
n—oo

and moreover
b
f=lim U(f,P,)

n—oo
a

WLOG, by the refinement lemma, assume that Vm,c € P,.
Let P, =P, Nla,cland P, = P, N|c,b].
By the definition of Darboux Sumes,
U(f, p,)
L(f,P,)
lim (U(f, B,) = L(f, P.))
= lim ((U(f, P,) + U(f, B))) — (L(f, Py) + L(f, P;)))

n—oo

= lim ((U(f, Py,) = L(f, Py)) + (U(f, Py) = L(f, PY)))

U(f, P, +U(f, Py)
L(f, P,) + L(f, Py)

Since (U(f,P,)— L(f,P,)) > 0and (U(f,P)) — L(f, P))) > 0, the two separate limits go to zero
if the whole limit goes to zero.

0= lim (U(f,P,) — L(f, P}))

n—oo

0= lim (U(f,P;)— L(f, P}))

n—oo

Then, by the Archimedes-Riemann theorem, lim U(f, P;) f fand lim U(f,Pr) f f, and
n—oo
those limits exist.

Therefore

n—oo

b
[ = Jim v(s.P)
= lim U(f,P) +U(f, Py)
= lim U(f,P;) + hm Uu(f,py,)

=Lf+[f
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6.8. Monotonicity of the Integral
If f,9:]a,b] = Rwith Vz, f(x) < g(z) and both integrable, then

b b
/ f< / g
6.8.1. Proof

There exists a sequence {P,} for both f and g such that

b
| = Jm u(s.p)

a

b
/ g= lim U(g, P,)
n—oo

a

Since f < g, U(f,P,) <U(g, P,) for all n.

Therefore

b b
/ f= lim U(f,P,) < lim U(g,Pn)=/ g
n— o0 n—0o00

a a

6.9. Linearity of the Integral
Let f,g: [a,b] — R be integrable and a, 8 € R. Then,

/abaf+69=a/abf+ﬁ/abf
6.9.1. Lemma

Let f,g : [a,b] — R be integrable (bounded?), « € R, and P be a partition of [a, b]. Then,
L(f,P)+ L(g,P) < L(f + g, P)
U(f+g,P)<U(f,P)+Ul(g,P)

Ifa>0

U(af,P)=aU(f,P)

L(af,P) = aL(f,P)
Ifa<O0

U(af,P)=aL(f,P)

L(af, P) = aU(f, P)
6.9.1.1. Proof

For any bounded function h, define

M;(h)= sup h

z€[w;_1,74
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m;(h) = inf h

z€lz;_1,m;)
Observe
vz € [z, 1, 2], f(2) + 9(x) < M;(f) + M;(9)
Therefore
M;(f+9) < M;(f) + M;(9)
Therefore

U(f+9,P)<U(f, P)+Ulg, P)

If « > 0,then M,;(af) = sup af(z)=a sup f(z)=aM,(f).

TE[w; 1,7 TE€[w; 1,74
Similarly m,;(af) = am,(f).
If a < 0then M;(af) = sup af(zx)=a inf f(z)=am,(f).

xzE[r;_ 1,7, we[z; 1,2,

Similarly m,(af) = aM,(f).

6.9.2. Proof
Case1: 6=0

There exists a sequence {P,} of partitions such that lim U(f,P,)— L(f,P,) =
n—oo

Then
7}1_)n(>10 U(af,P,)— L(af,P,)
= || lim U(f,P,) — L(f, P,)
=0
b alim U(f,P,) a>0 b
/a af = lim Uaf, P,) = {aZEHZZL(f,Pn) a<0 a/a f

Case2:a=p=1
There exists a sequence {P,} for f,g.

L(f,P,) + L(g, P,) < L(f +9,P,) <U(f+9,P,) <U(f,P,) +Ul(g, P,)

L(f,P,)+ L(g, P, /f+/
U(f,P,)+U(g,P, /f+/

Then as n — oo,

Therefore
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/b(f+g)=L(f+g,Pn)=U(f+g,Pn)=/abf+/bg

a a

Case 3: Full thing

/ab(aerBg)=/abaf+/abﬁg=a/abf+ﬁ/abg
6.10. Gap

Let P = {zy, x4, ..., z,, } be a partition. Then, gap P = max (z; — z;_;)

i=1,...,n
6.11. All continuous functions are integrable

All continuous functions on [a, b] are integrable.

6.11.1. Lemma
Let f: [a,b] — R be continuous and let P be a partition of [a,b]. Then, there exists u,v in one
partition subinterval such that

0<U(f,P)—L(f,P) < (f(u) — f(b))(b—a)
6.11.1.1. Proof
P={zy,zq,....,2,}

Since f is continuous on the interval [z, _,,x,], and [z,_;, ;] is sequentially compact, by the
extreme value theorem, there exists u,,v; such that f(u;,) = sup f(z)= M, and f(v;,) =

z€[z; 1,7
inf  f(z) =m,.
z€[z; 1,7

For some 1, f(ulo) —f(vio) =M; —m,; = max M;—m,.

Then

6.11.2. Proof
Let f : [a,b] — R be continuous.
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Let {P,} be any sequence of partitions such that lim gap P, =
n—oo

Then, there exists {u,, }, {v,,} such that
Note that |u,, —v,| < gap P,, therefore {u,, —v,,} — 0

Because f is continuous on a sequentially compact domain, it is uniformly continuous, so { f(u,,) —

f(v,)} = 0.
Therefore, by the comparison lemma, ILm U(f,P,) —L(f,P,) =0

6.12. Boundary does not matter
Let f : [a,b] — R be bounded and be continuous on (a,b). Then, f is integrable and f; f does not
depend on f(a) or f(b).

6.12.1. Proof
Let {a,} — aand {b,} = bwitha <a, <b, <b.
f is continuous on [a,,, b, ], so it is integrable on [a,,, b,,].

Since it is integrable, there exists a sequence of partitions {P,} of [a,,b,] such that 0 <
U(faPn)_L(f7P) < %4

Since f is bounded, there exists B such that Vz € [a,b],—B < f(z) < B.
Let P be a partition of [a, b] be formed by adding a and b to P,,.
In other words, if P, = {a,, = zy, 2, ...,2;_1, 2, = b, }, then P ={a,a,,z,....,z;,_1,b,,b}.

Then

z€la,a,] z€la,a,]

C, = ( sup f(x)— inf f(x)) (a, —a)
D, = <zes[1;f,b] f(z) — xei[?f,b] f(x)) (b—b,)

0<U(f,P¥)— L(f, P})

< % +2B((a, —a) + (b—b,,))

Since {+2B((a, —a)+ (b—b,))} =0, lim U(f,P;)— L(f,P;)=0 by the comparision
n—oo
lemma.

*For each n, there exists a sequence of partitions { P} such that lim U(f, P™)— L(f, P™) = 0. Then, by the

mM— 00

definition of the limit, there exists M > 0 such that 0 < U(f, P™") — L(f, P") < 1. Let P, = PM.
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Therefore f is integrable.

[

= lim U(f, P)

Furthermore

= lim U(fapn)+ ( S[up ]f(l‘)) (a’n_a)+ ( s[up]f(w)) (b_bn)
n—oo z€la,a, z€(b,,,b
= lim U(f,P,)

Therefore, f does not dependent on f(a) or f(b).

6.13. First Fundamental Theorem of Calculus
Let F': [a,b] — R is continuous and differentiable on (a,b) with F’ : (a,b) — R continuous and
bounded. Then, F” is integrable and

/ "B~ F) - Fla)

6.13.1. Lemma
Suppose f : [a, b] is integrable and for all partitions P

L(f,P) < A<U(f,P)
for some A € R, then f; f=A.

6.13.1.1. Proof
Since L(f,P) < A for all P,

Similarly,
—b
A<
and so
b —b
f<A£/f
a a

and



So

b
IREE
6.13.2. Proof

Let P be any partition of [a, b]. We will show that
L(f,P)<F(b)—F(a) <U(f,P)
Since F’ is continuous on (a,b) and bounded, F’ is integrable and does not depend on F’(a) or
F’(b).
For each z; € P, there exists ¢; € (z,_;, ;) such that
F(z;) — F(z;_,)

Ty — Ti—q

= F'(c,)

by the mean value theorem.

T, ) =F(z;) — F(z;_4)
Then

and similarly

and therefore

6.13.3. Results
Letr > 0.

Since F(z) = 2" /(r + 1) and F’(z) = z", and the fundamental theorem of calculus.
But this is not always helpful. Finding the antiderivative of ﬁ is very hard.

But this is possible by the additivity of the integral:

o= {8 253
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/6f=/2f+/6f20+4-6—4-2:16
0 0 2

But this function is impossible to do with this method

fa) = {Oif:cgé(@

Lifz =2 € Q andged(m,n) =1

The integral is ® over any set (to be proven later).

6.14. The Mean Value Theorem for Integrals
If f:[a,b] — R is continuous, then there exists ¢ € (a,b) such that

1 b
s =50 | 1
6.14.1. Proof

By the extreme value theorem, there exists m, M € [a, b] such that

F(M) = max f(x)

z€la,b]

and

f(m) = min f(z)

z€la,b]
Then, by making a very bad partition P = [a, ]:

b
Fm)(b— a) g/ f < F(M)(b—a)

And therefore

1
<
s 2
By the IVT, there exists ¢ € [a, b] such that

f<c>:bia/abf

6.15. Integrals produce continuous functions
Suppose f : [a,b] — R is integrable. Then, F : [a,b] — R defined by

F<x>=[f

and F'(a) = 0, is continuous.
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6.15.1. Proof
Since f is integrable 3M > 0 such that, for all z € [a,b], —M < f(z) < M.

Let u,v € [a,b] with u < v. Then

rw= [
=/auf+ :f
— F(u) + :f

And then
Flo)~ Fu) = [ 1

u

By the MVT for integrals:

Thus

< M|v— ul

[

[F(v) = F(u)| < Mlv—ul

The same holds for v < w.

F'is Lipschitz and, therefore, continuous.

6.16. Second Fundamental Theorem of Calculus
Suppose f : [a,b] — R is continuous. Then F': [a, b] — R defined by

F(x)=/:f

and F'(a) = 0 is differentiable, and F'(z) = f(z).

6.16.1. Proof
Fix x4 € (a,b). We will show that F is differentiable at z,,.

Let z € (a,b) such that z # z,. If x < z:
To
F(ag) = Fla)+ [

If x>

59



Case 1:

By the MVT for integrals, there exists c¢(z) € (z, z,) such that

fle(w) = —— [y = Tl =T

To— Tog— T

xT

The same is true in case 2.

Since c(x) € (z,z,) or c(z) € (zy,z), lim c(x) = z,
T—xTg

So lim f(c(z,)) = f(x,), and thus lim FE=FE@) _ ¢z
a:—>a;0 .1:—>w0 0

Therefore F'(z,) = f(z,).

6.17. Backwards bounds derivative
Forz <b

6.17.1. Proof

We conclude that

6.18. Backwards Bounds
If f is integrable or [a, b], then

and [* f=0.

6.19. Other functions in the top bound
If ¢ : R — R is differentiable and f : [a,b] — R is continuous, then
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is differentiable as long as ¢(x) € [a, b] and moreover
Fl(z) = f(p(z))g’ (x)

6.19.1. Proof
Let

G(w)z/;f

Then
By the chain rule

By the second FTC:

6.20. Natural Log
Forz > O:

6.20.1. Properties
We know that this function is continuous, differentiable and strictly increasing.

1. Va,b > 0, log(ab) = log(a) + log(b)
2. Vz > 0,r € Q,log(z") = rlog(x)
3. log : (0,00) — R is surjective.

6.20.1.1. Proof
First:
Fix a > 0. Define h : (0,00) — R as h(z) = log(az) — log(a) — log(z).

h(1) = log(a) —log(a) —log(1) = —log(1) =0

h'(z) = alog’ (ax) — 0 — log’(x)

1 1
= qQ— — —

axr T
Tz oz
=0

61



Therefore h'(z) = 0 and so h(z) = ¢, and k(1) = 0 and therefore h(x) = 0.

Second:
Let h(z) = log(z") — rlog(z).

Third:

Note 0 = log(1) = log(z2) = log(z) + log(2) and therefore log(z) = —log(2).

So it is sufficient to show log : (1,00) — (0, c0) is surjective.

Let ¢ > 0. Choose n € N sufficiently large so that nlog(2) > c.

Then log(2™) = nlog(2) > c. Since F(1) = 0, and ¢ > 0, there exists z € (1,2") such that log(z) =

C.

6.21. Define e”
log(z) is bijective from (0, ) to R.5

Therefore, there exists g(z) : R — (0, 00) such that Vz € R,log(g(z)) = = and Vz > 0, g(log(z)) =
x

Furthermore:

. =i=g(m)

“log(g(®) ok

g ()

Previously, we have defined a® for z € Q.

But we know log(a”) = xlog(a). Let us define this as a fact for all R.
Then, a* = g(z log(a)).

There exists a unique number e such that log(e) = 1.

Let e = g(zlog(e)) = g(x).

6.22. ¢ is unique
Suppose f : R — R is differentiable such that f* = f. Then, f(z) = ce” for some ¢ € R.

6.22.1. Proof
Suppose ¢’ = g. Define h(z) = 2

Then

51t is injective because it is strictly increasing.
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h(0) =1 so h(z) =1 for all z.
Therefore g(z) = g(0)e”.

6.23. Integration By Parts
Suppose f, g : [a,b] — R are continuous and differentiable on (a, b) with bounded derivatives. Then

b
/ f(@)g (z) dz = F(b)g(b) — / f(a
6.23.1. Proof

By the product rule:
(fg) =fg+gf
Thus:

/fg—f /fg

6.24. Integration by substitution

Let f: [a,b] — R be continuous and g : [¢,d] — [a,b] be continuous and differentiable on (¢, d)
with a bounded derivative.

Then

6.24.1. Proof
Let

g(d)
flg t)dt — f(t)de
o= L.
H(c) = 0 by definition of integral from point to point.
H'(z) = f(g9(z))g' (z) — f(g(z))g'(x) = 0

Therefore H(z) = 0, and so they are equal.

6.25. Darboux Sum Convergence
Let f : [a,b] — R be bounded. Let f : [a,b] — R be bounded. Then the following are equivalent:
1. fis integrable
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2. For all sequences of partitions with {P,,} such that {gap P,} — 0:
lim U(f,P,)—L(f, P,) =0
n—oo

6.25.1. Lemma

Suppose f : [a,b] — R is bounded with —M < f(z) < M. Let P be a partition with k subintervals,
and let P* be any other partition. Then

U(f,P*) <U(f,P)+kM gap P*
L(f,P*) > L(f,P) — kM gap P*
6.25.2. Proof
Let P* = {zy, 21, Zq, ..., T, }. Let P = {zy, 21, ..., 21, }-
LetC={ie{1,...,n}|(z;,z,_;) NP + &}.
i € C'if (z,_,,z;) contains at least one z;.
ZMz(‘rz — ;1) < kM gap P*
ieC
Let P = P U P*. Then:
ZMz(mz —z;1) SU(f, P')
itC

The above is incorrect for functions with negative regions across an interval where z is. By the
refinement theorem:

ZMz(:Ez —z;1) SU(f, P) <U(f, P)
i¢C
Therefore

n

U(f,P) = ZMi(wiﬁxifl)

i=1

= M;(z; ) + Z M;(z;, ;1)
ieC i¢C

< kM gap P*+U(f,P)

<U(f,P)+ kM gap P*

A similar argument holds for lower sums.

6.25.3. Proof

If for all sequences of partitions with { P, } such that {gap P,} — 0, lim U(f,P,) — L(f,P,) =0,
n—,oo

then there exists a sequence, and therefore by the Archimedes-Riemann theorem, f is integrable.

The other way:
Let be f integrable. Let € > 0. Let { P, } be any sequence such that {gap P, } — 0.
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We will show there exists an N such that if n > N then:
‘U<f7Pn) _L(fvpn)‘ <e

By the Archimedes-Riemann theorem, there exists a partition such that

U(f,P)—L(f,P)<

N ™

Name the size of that partition k.
Let N be large enough that

€
2

Therefore U(f,P,) — L(f,P,) < U(f,P)+ kM gap P, — L(f,P)+ kM gap P,.

Furthermore:

2kM gap P, >

U(f,P)+ kM gap P, — L(f, P) + kM gap Pn<§+g=e

And therefore:

U(f’Pn)_L(faPn)<E
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7. Taylor Series

7.1. Contact Order
For f,g: I — R have contact order 0 at =, € I if g(z() = f(z;)-

Furthermore, if f and g are n-times differentiable, then they have contact order n if for all k €
1,...,n, f*)(z,) = ¢*)(x,) and f and g have contact order .

7.1.1. Example

f(z) = V2 —1x2, g(x) = €>*. At 7, = 1, these have a contact order of 1, but not a contact order
of 2.

7.1.2. Example
dk
da*

[(m - xo)n]

T=x

7.2. Taylor Polynomial
Let f: I — R be n-times differentiable and let z, € I. There exists a unique polynomial, p,,, of
degree at most n that has contact order n with f at x,. Moreover,

f" (o)
2!

Py (2) = f(zg) + f'(20) (T — ) + (z — %)2 +oet —O@ — )"

P, () is the nth Taylor polynomial of f at .

7.2.1. Proof of existence
By the previous example, and linearity of the the differential operator, Vi € {0, ...,n}:

f(k) (z)

il x k! = f®)(z)

p7(7,k) (Io) =

Therefore p,, has contact order n.
Suppose ¢(z) is a polynomial of order at most n that has contact order n with f at .
Because it is contact order n, Vk € {0, ...,n}:

q(k) (z9) = f(k) (o)

This covers all terms of the sequence because each of these terms are linearly independent by
creating an triangular matrix.

q(z) = g+ ¢y (z — 34) + co(x — mg) + + + ¢, (2 — 3)"
By the previous example, and linearity of the the differential operator:

B) (5
o= T3 o) =, (0)

7.2.2. Example
Find the nth Taylor polynomial for e” at z, = 0.
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And therefore

— 1 2 1 3 1 n
7.2.3. Example
Find the nth Taylor polynomial for f(z) = log(z + 1) at z, = 0.
1
/7 — / 0 — 1
f@)=—5 10
1
"(z) = ———= — f"(0) = -1
f'@) =~ = 10)
—1)FL(k —1)!
(k) :( ®)(0) = (=1)k1(k —1)!
) = e Y0 = (D k-
And therefore
1 1 1 —1)7+t
pp(z) =0+2z— 5902 + 59”3 — Zw‘* 4t %m”

7.2.4. Idea
If nis large, p, (z) = f(z) for z ~ z,.

7.3. Lagrange Remainder Theorem
Let f : I — Rben + 1times differentiable. Let z, € I, let p,, () be the nth taylor polynomial. Then,
forall z, € I,z € I such that x # z,, there exists ¢ between z and z such that

. f(n+1)(c) n41
f(@) —p,(z) = m(fﬂ — )
7.3.1. Proof
Let R(z) = f(z) — pp(),
Since the taylor polynomial has contact order n with f at z,, R(z,) = R'(zy) = -~ = R"™ () = 0.

By Section 5.19, there exists a c between z, and x such that:

R(n+1) (C)

(n+1)! "

R(z) = (x —

Furthermore, since p{"*!) = 0, R(™+1) = f(n+1) Thuys:
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-0

7.4. ¢ is irrational
e is irrational

7.4.1. Proof
First, we show, e < 4.

e is the unique number such that log(e) = 1. Therefore, e < 4 iff log(4) > 1, since log is strictly
monotone increasing.

Therefore e < 4.

Since e < 4, e < 4%Vx > 0. Let f(z) = e®. Let n € N. Then, centered at z;, =0 p,,(z) =1+ z +
z? Loz

2 n!"*

Suppose e is rational. Then e = ¢ for some integers a, b. Assume n > b and n > 4.

Then, e —p,(1) =4 — (143 + -+ 3).

Furthermore, by Section 7.3, there exists ¢ € (0,1) such that

c

CES A

e=pnll) = (n+1)!

Therefore,

g_(1+1+1+ +l)—(9)c LI .
b 2 nt) \b) (n+1)! " (n+1)! " (n+1)

<1

12 '<1+1+1+ +1)<
Ty 2 n! n+1

Butn!¢ —nl(1+1+3+-+-5)€Zsincen!¢ eZsincen>bandn!(1+1+35+ -+ 1) €Z

Furthermore, since <537 > 0, e —p,(1) > 0.

Therefore we have found an integer between zero and one. But this is a contradiction, since there
is no integer between zero and one.

Therefore the assumption that e = % is false, and therefore e ¢ Q.

7.5. Euler Gamma
Leta, = (1+3+ 3+ + 1) —log(n+1). Then {a,} is monotone increasing and bounded, and
thus there exists v > 0 such that {a,,} — 7.

7.5.1. Proof
We will show
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.732

0<z—log(l+z)< 5
forallz > 0.
Firstly, let f(z) = z —log(1 + z). Then,

1
1+z

fz)=1

Since H% >0, f'(z) > 0, and so f is strictly monotone increasing. f(0) = 0, so for z > 0, f(z) > 0.

Let g(z) = 22 — = + log(z + 1).

1
/ — _1
g(x) ==z ti2
"(z) =1 LI
z)=1————
g 1+2)?

Since ¢’(0) = 0 and ¢’ (z) is strictly monotone increasing, ¢’(x) > 0.
Since g(0) = 0, for all z > 0, g(x) > 0.
Let k € Nand let z = 1. Then,

0< L] <1+1)< 1
k8 TE) S o2
1
Apyiq1 — Ay = n+1 —log(n+2)—|—log(n—|—1)
1 (n—i—l—i—l)
= —log "~
n+1 n+1
1
. | 14—
g( +n+1>
fork=n+1
=——log|1+ ~
k: og( +k>
Therefore
1
0<an+1 an—ﬁ
1
0 <tnp—an <507

Thus, {a,, } is monotone increasing.

7.6. Series
If the limit exists:
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o0 o0
> o= lim > a
k=1 k=1
If the limit does not exist, we say that the infinite sum diverges.

7.7. Taylor Series

A sequence of Taylor polynomials {p, } for a function f at a point z, converges to f at x if
lim f(z) — p, () = 0.

n—oo

If p, () = ay + a,(z — zo) + ag(z — z,)° + - + a,, (z — )", then a Taylor series is:
- k
Zak(m—xo)
k=0

7.8. A time a function is equal to its taylor series

Suppose f : I — R has derivatives of all orders. Suppose r, M > 0 and z, € I suchthatVz € [z, —
T, xo + 7, |f(")(x)| < M™,

Then

) (5
)y =3 L) gy

!
P

7.8.1. Lemma

Letc > 0. lim < =0.
n—oo

7.8.1.1. Proof
LetkeN, k> 2c If n >k,

o

Therefore

o 2o

0<
~ nl n

Since (2¢)* is constant in n and {5+ } — 0, so therefore
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n

lim — =0
n—oo Nl

7.8.2. Proof
By the Section 7.3, Vz € [z, — 7,z + 7], there exists ¢ € [z, — r, 2, + r] such that

D (c) n
|f(z) — p, ()] = m(@”—%) i
Then
f(nJrl)(C)( )n+1 < (Mn+17.n+l) B entl
(nt1) "o m+1)!  (n+1)
Let € > 0. There 3N such that if n > N, then (EHTT)' < ¢ by the lemma.
Thus
= ) (zy) k "l
‘f(w)—k; R T S oy <8
and therefore
s W () k
Jm D e =)
= fH) ()
= =@ —a) = @)
k=0 :
7.8.3. ¢% is analytic
o,k
VreR, e* = r
— k!

7.8.3.1. Proof
Let z, = 0 and r = |z|. Let f(z) = €".

f(")(ac) = e®.
Then let M = €".
(@) = le*| <em =M

k

Thus f(z) =>" %

7.9. Real-Analytic

f:I — Risreal-analytic in [ if for all x,z, € I

oo £(k) (4
)y =3 L) gy

k!

71



7.9.1. Example

) = e o2 x#+0
O PR

is not real-analytic, but is infinitely differentiable.

gy = Jaa(R)e T #0
£ ) {O n 40

Where g,, is some polynomial. But the derivatives are zero every time, so the taylor series converges
to zero.
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8. Sequences of Functions

8.1. Cauchy Sequences
A sequence {a, } is Cauchy if for all £ > 0, there exists N such that for all n,m > N, then |a,, —
a,,| <e.

8.2. Sequences converge iff they are Cauchy
A sequence converges iff it is Cauchy.

8.2.1. Lemma
All Cauchy sequences are bounded.

8.2.1.1. Proof
Let {a,,} be Cauchy. Let € = 1. Then, there exists N such that n,m > N, |a,, — a,,| < 1.

In particular, |a,, —ay| < 1.
’an’ < ma’x{|aN‘ + 17 ‘a1‘7 ‘a2‘7 ‘a3|7 a3 ’aNfl‘}

8.2.2. Proof

+ Suppose {a,,} is Cauchy. Then, {a,} is bounded and a subsequence {ank} converging to a
exists.

Fix e > 0. Then, there exists IV, such that if K > N, then ‘ank - a‘ < £. Also, there exists N, such
that if n, ny, > Ny, then, |a,, —a,, | < §. Let N = max{N,, N,}.If n > N,

\an—alg‘an—ank‘—i-’ank—a’<§+g=€

8.3. Convergent Series must go to zero
If 3°7° | ay converges, {a;} — 0.

8.4. Prop

> 1
Zrkz if |r] <1
— 1—r

8.5. Monotone Convergence Theorem For Series
Suppose {a,} is a sequence of nonnegative numbers. Then EZ‘;I a;, converges iff 3M > 0 such
that

Vn,al +a2+a3+.“+a’n <M
8.6. Comparison Test
Suppose {a}, {b,} are nonnegative such that 0 < a;, < b,.

1. If 377 | by, converges, so does 3_ " | ay.
2. If 37" a; diverges, so does 3_ * b,
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8.7. Integral Test

If {a;} is nonnegative and f : [1,00) — R continuous and decreasing such that f(k) = a,, for all
k €N, then 3 a; converges iff {fln f} is bounded.

8080 p-test
All sums of the the form below converge:

Zkip p>1
k=1

8.8.1. Proof
Let f(z) = 5.

This converges, and therefore the above converges.

8.9. Alternating Series Test
2211 (—1)**1a,, where a; > 0, converges iff {a;} — 0.
8.10. Absolute Convergence implies convergence
>, ay converges if 3°7° |a,| converges.
8.11. Ratio Test
Suppose lim 22 = ¢, Then
oo k—oo %k X
1. >0, , ai converges if £ < 1.
2. 377 a; diverges if £ > 1.
8.12. Riemann Rearrangement Theorem
Suppose ) a;, converges but 3_>° |a,| does not.
Then for all z € R, there exists a rearrangement of {a,, } to a sequence {b,,} such that

ibnza:

n=1

8.13. Pointwise Convergence
{f.} — f converges to f pointwise if V& € I, ILm fr@) = f(@).

8.13.1. Example
Let f,, = z", for f,, : [0,1] — R.

. 0 z<l1
lim f,(x) = {1 o1

8.13.2. Example
f(x)=e " for f, :R >R
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lim fn(x):{(l) r70

n—oo

8.13.3. Example
A = Q N [07 1] = {qlaq27Q3a }

Let f,, : [0,1] — R be defined by

_ 1 T e {Q1)q2aq37"'7qn}
fol@) = {O otherwise

8.13.4. Example

Therefore,

8.13.5. Example

fnR=R

and then lim f

8.14. Uniform Convergence
Let f,: I — R for all n. {f,,} converges uniformly to f: I — R if Ve,3N,Vn > N, sup|f,(z) —

zel
flx)] <e.

8.15. Uniform Cauchy

Let f,, : I — Rforalln.{f,} isuniformly Cauchyif Ve > 0,3N,Vn,m > N, sul?lfn(x) — (@) <€
xE
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8.16. Weierstrass Uniform Convergence Criterion
Let f,, : I — R. Then {f,} is uniformly convergent of f : I — R iff {f,,} is uniformly Cauchy.

8.16.1. Proof
— Suppose {f,,} — f uniformly.

Fix € > 0. There exists N such that Vn > N

suplf, (2) — f(@)] < 5

xel

Then,if n,m > N

S;g)lfn(m) — fn(0)] < iléll)(lfn(w) — f(@)] +[f(z) = fru(2)]) < sup|f,,(X) — f(z)| + sup|f(z) — [ (2)]

xel xzel
<+ Suppose {f,,} is uniformly Cauchy.

Fix € > 0. Then there exists N such that if n,m > N

Supl £ () — fn (@)] < &

Therefore, for all z, {f,,(z)} is Cauchy. Thus, there exists a y, such that {f,, (z)} — y,. Define
If n,m > N for all z,

—> < ful@) — fu@) <2

WLOG, m > n, m = n + k for some k.
fa(@) = = < fuinl(@) < ful@) + 2
lim f,(2) 45 = fu(@) + -
kli_)m frsr(@) = f(2)
Then
fal@) = 5 < J(@) < Fula) + 5

and

suplf(x) — fo(a)| < 5 <&
zel

8.17. Cantor Set
LetI =[0,1].LetI; = [0,4] U [3,1]. 1, = [0,4] U [3, 5] U [, 2] U [&, 1]. Think of this like repeat-
edly taking out the center.3/9

For I,,, this is the union of 2™ closed intervals of length 1/3".
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€ is the Cantor set.

Define

We claim X = C.

Furthermore, C is uncountably infinite. If z € C, z = )
infinite. Then, there exists a bijection f : N — C.

> 2z ¢, =0V 2. Suppose C is countably

n=1 3n

n=1
o0 02
_ n
@)=Y 3
n=1
e} Ck
HOEDS 3n
n=1
Let
o — 0 if cn =2
n 2 if cr =0
Let

o0 *
x*:E:C—”
n

n=1

Note that z* € € but it is also not equal to any of f(1), f(2),..., which is a contradiction, and
therefore € is uncountably infinite.

Let A(S) be the length of a set S.

e A\(S)>0forall S C R.

If S C S’, then A(S) < A(S")

A(la,b)) = b—a

SNS" =@, then A(SUS") = A(S) + A(5")

€ is uncountably infinite.
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It has length ©.

It is a closed set.

No isolated points

» all points are limit points
Totally disconnected

» contains no open intervals

Let fy(z) = =.

Let f,(0) =0, f,(1) =1 f, (x)=0ifx ¢ I,,.
Then, {f,,} is uniformly Cauchy, and so {f,,} — f uniformly. Each f,, is continuous and therefore

f is continuous. f is also called the Devil's staircase.

8.18. Uniform Convergence Preserves Continuity
Suppose {f, : I — R} is a sequence of continuous functions converging uniformly to f: I — R.
Then f is continuous.

8.18.1. Proof
Fix € > 0. Then there exists N such that if n > N, then

|[fn(x) = f2)] <

Let z,y € I. Then
[fn(z) — fl)] <
[fn(y) — fy)] <

WM W Mm

Furthermore, fy is continuous at z, so there exists § > 0 such that if |z — y| < J, there exists

In(@) = W)l < 5

Thus, if |z — y| < d:

|f(z) — f(y)]
= [f(2) — fn(z) + fn(z) — fn(y) + In(y) — f()
< |f(@) = In@)| + [fn(X) = In@)] + [Fn(y) — F(y)l
<cHcto=c

And therefore f is continuous.

8.19. Distance Metric in the Space of Continuous Bounded Functions
The space of all continuous bounded functions on a set A C R is CY(A) and the distance between
two functions f,g € C9(A) is

d(f,g) = sup|f(z) — g(z)]

zeA
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8.20. Uniform Convergence allows Limit-Integral Interchange
Suppose { f,, : [a,b] — R} is a sequence of integrable functions uniformly converging to f : [a, b] —

R. Then f is integrable and
b b b
1= =i [,
8.20.1. Proof

If h(z) < g(z) for all z € [a, ], then

To show that f is integrable, we will show that for all € > 0,

f—/bf<s

—a

—b

o< |

a
Fixe >0, lete’ = a)-
Then there exists N such that if n > N, for all z € [a, b]:

fu(@) =& < fz) < fr(2) + €

Thus

And similarly:

Therefore:
—b b —b - n .
()S/f/fé +-— fnt+ 3
3 3
a ~a a —a

2e

<=

3

<e€

Therefore f is integrable. Furthermore
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([ )5 <([)
o[-

Thus, for all € > 0, there exists N such that if n > N,

[r] x|
w1

8.21. Continuously Differentiable
A function f : I — R is continuous differentiable if it is differentiable and f’ is continuous.

and therefore:

8.22. Differentiability of Pointwise Limit Function with Uniform Derivative

Convergence
Suppose {f,, : I — R} is a sequence of continuously differentiable functions such that:
1. {f,} — f pointwise in I.
2. {f,/} — g uniformly in I.

Then, f is differentiable and f’ = g.

8.22.1. Proof
Pick z, € I. Then, for all n,

Furthermore
Jm £, (@)~ fa(mo) = f() ~ F(ao)
Thus:
HORSEY
= lim_f, () — (o)
= Jim [
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9. Power Series

9.1. Power series
A power series is any series of the form

o ]
E Ckl'k
k=0

The domain of convergence of a power series is the set of all values of = such that the series
converges.

Furthermore, 0 is always in that set.

9.1.1. Example

1
Zxk: 1—z

k

00
=0

Iff -l<z<1.

9.1.2. Example
S
— k+2

Perform the ratio test:

(—1)k+11‘k+1 k-l— 9

I
ool k+3  (—1)Fzk
I Hk+2

= lim |z
k—soo k43

= lim |z|
k—oo

Therefore, the series converges —1 < x < 1

9.2. Analytic functions are continuous when uniformly convergent
Let

@) =) cpa®
k=0

If {f,, ()} converges uniformly to f defined as

oo
f(z) = Z cpa®
k=0
Then f is continuous and integrable. Furthermore:

/bf=§/abckxk

a
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9.3. Relating Power and Taylor Series
Let > 0 such that (r,—r) C D, where D is the domain of convergence of a power series

(Do) - S e

k=0

In particular,

9.3.1. Lemma

Let A be a subset of the domain of convergence of the power series Z;‘;O c,z¥. If there exists
M > 0and o € R with 0 < o < 1 such that for all z € A and for all k € N, |¢,2*| < Ma* then the
power series converges uniformly in A.

9.3.1.1. Proof
Let € > 0. Let N be large enough such that

e, ]
j£:4h{ak <e€
k=N
This is possible since
o )
> aat
k=N

o) N-1
=:j£:.h[ak-— j£:4h{ak
k=0 k=0

M __Al(l——aN)

l1—«a l—«o
__AIaN
11—«

And since 0 < a < 1, N can be made large enough.

Then Vz € A, ifn > N:
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Therefore it is uniformly convergent.

9.3.2. Lemma
If 0 < o < f3, then there exists ¢ > 0 such that ka* < ¢3* forall k € N.

9.3.3. Proposition
Let the power series

o0
k
E CLT

k=0

have domain of convergence D. Let z, € D, thenif 0 < r < |z,|, then [—r,r| C D, and also a subset
of the domain of convergence of

o0

k-1
E kc,x
k=1

Moreover, both converge uniformly on [—r, ]

9.3.3.1. Proof
The terms of {|c,f|} are bounded, so there exists an M such that

|ckx§’ <M
Let @ = r/|zy| < 1. Then, Vx € [—r, 7

[exa”|

By the previous lemma, the power series 220:0 c,z* converges uniformly in [—r, 7]
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Observe that

|(k-+—1)ck+1xk|
< (b + Dy |7t
k+1
T
< k+1
r
_k+1
 kr
2M o
T

< k+1

|ck+1|7“

Mak+1

kMak+1

< kak

By a lemma, letting o’ = aT“, there exists ¢ such that ka* < ca’k for all k.

Therefore

2Moace
<

o’k

r
N——

M’

And so the following converges uniformly in [—r, r|:

o0

k-1
E kc,x
k=1

9.3.4. Proposition

If {c,} is a sequence of nonnegative integers such that 3°7° ¢, converges and {h,(z)} is a
sequence of continuous function on aset A C R such that forall z, k, |h;,(z)| < ¢, then Z/iio hy(x)
converges uniformly f : A — R and f is continuous.

9.3.4.1. Proof
Let € > 0. Let N be large enough such that

o0
E Cr <e€
k=N

If n > N,
Z hy,(z) — Z hy,(2)
k=0 k=0
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9.4. Function that is not differentiable anywhere
Let

|z + 2] if-3<zx<—1
h(z) = 4 |z| if—-1<z<1
|z — 2| ifl<z<3

orh(z)=1— |mod(ac 2) —1J.

Define hy(z) = 5xh(2%z)
1.0
0.8"
0.6
\o4l | \ /
. _ Mo \ :
_4 -2 E 2 4

— h(x) hi(x) = ha(x) — h3(x)
Define f(z) = 327 hy(x)
f is continuous on R but not differentiable at any point.

9.4.1. Lemma
Let z, € R, then h,, is monotone on either [z, 7, + 5] o [To — 52, To)-

9.4.2, Proof
|hi ()| < 5% L for all z, k and thus by proposition, f is continuous.

We need to, for any z,, find a sequence {z,,} — x, such that
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i £(&n) = f(2o)
n—00 x, — T
Let z, € R. For all n, h,, is monotone on [z, Zy + 5| OF [Ty — it To)-

3 — 1 _ 1
In the first case, let z,, = 24 + 5757 In the second case, let x,, = 1j — 537

Then h,, is monotone between z, and z,,.

f@,) — (=)

Lyn — 2o

(B @] - [ b))

> hy(z,) — hy (g
3 (@) — hg (o)

Tpn — 2o

k=0
fO<k<n

hy(2,,) — by ()

Tn — 2o

Note: missing case for n = k + 1. This doesn’t really change very much

IfE+1>n
hi(z,) — hi (o)
1
= hy, (ﬂco + W) — hy ()
=0

Since, foralli € Z,x € R:

And

Therefore:
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 hy,(z,,) — hy(zo)

k=0 TnT %0
_ Jeven if n is odd
odd if n is even

f(zn)—f(zo)

n~To

And since is a sequence that alternates between even and odd, the limit as n — oo
does not converge, and therefore the function is not differentiable.

88



	Preliminaries
	Set Operations
	Intersection
	Union

	Singleton
	Universal Set
	Properties of union and intersection
	Complement
	Minus
	Subset
	Empty Set
	Functions
	Example

	Image
	Injective/One-to-one
	Example

	Surjective/Onto
	Bijective
	Set Cardinality
	Example

	Existence of Inverses
	Axioms of Real Numbers
	Proposition 1
	Proof

	Proposition 2
	Proof

	Proposition 3
	Proof

	Proposition 4
	Proof

	Proposition 5
	Proof


	Exercises
	Positivity Axioms of Real Numbers
	Proposition
	Proposition
	Proposition

	Interval Notation
	Inductive Set
	Natural Numbers: ℕ
	Proposition
	Proof


	Properties of ℕ
	Integers: ℤ
	Properties of ℤ
	Rationals: ℚ
	Proposition
	Proposition
	Proof:

	Facts
	Formational Example
	Proposition
	Proof



	Tools of Analysis
	Bounded Above
	Bounded Below
	Completeness Axiom
	Definition of Real Numbers
	Supremum
	Example

	Infimum
	2 ∈ ℝ
	Proof

	Archimedean Property
	Proof

	Integers will not exist between integers
	Proof

	Sets of integers have maxima
	Proof

	One integer exist in each interval of size 1
	Proof

	A rational exists between any two reals
	Proof

	Dense
	Examples

	Absolute Value
	Properties

	Triangle Inequality
	Proof

	Some Sums

	Sequences
	Sequences
	Examples

	Convergence of Sequence
	Example: Converge
	Example: Does not converge

	Cannot converge to two different values
	Proof

	Create Limit to Zero
	Proof

	All Convergent Sequences are Bounded
	Proof

	Comparison Lemma
	Proof

	Addition of Sequences
	Proof

	Multiply Sequence by Constant
	Proof

	Multiply Zero-Valued Sequence by Zero-Valued Sequence
	Proof

	Multiply Sequence by Sequence
	Proof

	Reciprocal of sequence
	Proof

	Division of Sequences
	Proof


	Continuous Functions
	A subset of the reals is dense based on sequential denseness
	Proof

	Nonnegative sequences converge to a nonnegative number
	Proof

	Squeeze Theoremish Proposition
	Proof

	Closed Sets
	Example
	Example

	Open Set
	Example

	Relating Closed and Open Sets
	Go to ∞
	Example

	Monotone
	Monotone Convergence Theorem
	Proof
	Proposition
	Proof

	Proposition
	Proof


	Nested Interval Theorem
	Proof

	Subsequence
	Example

	Subsequences of a Convergent Sequence Converge
	Proof

	Peak Index
	Every sequence has a monotone subsequence.
	Proof
	Case 1: Finite Peak Indices
	Case 2: Infinitely Many Peak Indices


	Bounded Sequences have convergent subsequences
	Proof

	Sequentially Compact
	Example
	Non-Examples

	Bolzano-Weierstrass Theorem
	Proof

	Continuous function
	Examples

	Manipulating Continuous Functions
	Composing Continous Functions
	Proof

	Maximum and Maximizer
	Examples

	Minimum and Minimizer
	Image
	Image of a sequentially compact set is sequentially compact
	Proof

	Extreme Value Theorem
	Proof

	Intermediate Value Theorem
	Proof

	Roots exist
	Proof

	Image of an interval is an interval
	Proof

	Uniform Continuity
	Example
	Example

	Continuous from uniform continuity
	Proof

	Uniform continuity from Continuity
	Proof

	Epsilon-Delta Criterion
	Example
	Scratch
	Proof


	Relating epsilon-delta criterion and continuity
	Uniformly Continuity by ε−δ criterion
	Example
	Scratch
	Work

	Monotone Function
	Continuity by image and monotone
	Proof

	Strictly Monotone Function
	Strictly monotone functions are injective
	Proof

	Strictly monotone functions can be bijective
	Strictly monotone functions can have an inverse
	Inverses are continuous
	Proof

	xmn exists and define xr
	Limit Point
	Limit
	Algebraic Limit Theorem
	Continuous Functions and Limits

	Derivatives
	Limit Definition of the Derivative
	Example
	Example

	Differentiability implies continuity
	Proof
	Example: It's not the other way

	Combining Derivatives
	Proof

	Neighborhood
	Change of variables for limits
	Proof
	Invertibility for change of variables
	Derivative of Inverse
	Proof

	Derivative of Root
	Chain rule
	Proof

	Power Rule (for rationals)
	Proof

	The Derivative is Zero at a Maximzer
	Proof

	Rolle's Theorem
	Proof

	Mean Value Theorem
	Proof

	Identity Criterion
	Proof

	Equal derivatives differ by a constant.
	Proof

	Strictly Increasing by derivative
	Proof
	Example
	Example

	Cauchy Mean Value Theorem
	Proof

	Vague Taylor-series-like statement
	Proof


	Integrals
	Darboux Sums
	Upper and Lower Integrals
	Proof
	Counterexample to equality

	Integral
	Lemma
	Archimedes-Riemann
	Proof

	Monotone Functions are Integrable
	Proof

	Additivity of the Integral
	Proof

	Monotonicity of the Integral
	Proof

	Linearity of the Integral
	Lemma
	Proof

	Proof

	Gap
	All continuous functions are integrable
	Lemma
	Proof

	Proof

	Boundary does not matter
	Proof

	First Fundamental Theorem of Calculus
	Lemma
	Proof

	Proof
	Results

	The Mean Value Theorem for Integrals
	Proof

	Integrals produce continuous functions
	Proof

	Second Fundamental Theorem of Calculus
	Proof

	Backwards bounds derivative
	Proof

	Backwards Bounds
	Other functions in the top bound
	Proof

	Natural Log
	Properties
	Proof


	Define ex
	ex is unique
	Proof

	Integration By Parts
	Proof

	Integration by substitution
	Proof

	Darboux Sum Convergence
	Lemma
	Proof
	Proof


	Taylor Series
	Contact Order
	Example
	Example

	Taylor Polynomial
	Proof of existence
	Example
	Example
	Idea

	Lagrange Remainder Theorem
	Proof

	e is irrational
	Proof

	Euler Gamma
	Proof

	Series
	Taylor Series
	A time a function is equal to its taylor series
	Lemma
	Proof

	Proof
	ex is analytic
	Proof


	Real-Analytic
	Example


	Sequences of Functions
	Cauchy Sequences
	Sequences converge iff they are Cauchy
	Lemma
	Proof

	Proof

	Convergent Series must go to zero
	Prop
	Monotone Convergence Theorem For Series
	Comparison Test
	Integral Test
	p-test
	Proof

	Alternating Series Test
	Absolute Convergence implies convergence
	Ratio Test
	Riemann Rearrangement Theorem
	Pointwise Convergence
	Example
	Example
	Example
	Example
	Example

	Uniform Convergence
	Uniform Cauchy
	Weierstrass Uniform Convergence Criterion
	Proof

	Cantor Set
	Uniform Convergence Preserves Continuity
	Proof

	Distance Metric in the Space of Continuous Bounded Functions
	Uniform Convergence allows Limit-Integral Interchange
	Proof

	Continuously Differentiable
	Differentiability of Pointwise Limit Function with Uniform Derivative Convergence
	Proof


	Power Series
	Power series
	Example
	Example

	Analytic functions are continuous when uniformly convergent
	Relating Power and Taylor Series
	Lemma
	Proof

	Lemma
	Proposition
	Proof

	Proposition
	Proof


	Function that is not differentiable anywhere
	Lemma
	Proof



